La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
F. Seno , A.L. Stella
J. Phys. France, 49 5 (1988) 739-748
Citations de cet article :
96 articles
Universality class of the special adsorption point of two-dimensional lattice polymers
Nathann T. Rodrigues, Tiago J. Oliveira and Thomas Prellberg Physical Review E 108 (2) (2023) https://doi.org/10.1103/PhysRevE.108.024146
Polymers critical point originates Brownian non-Gaussian diffusion
Sankaran Nampoothiri, Enzo Orlandini, Flavio Seno and Fulvio Baldovin Physical Review E 104 (6) (2021) https://doi.org/10.1103/PhysRevE.104.L062501
Trapping in self-avoiding walks with nearest-neighbor attraction
Wyatt Hooper and Alexander R. Klotz Physical Review E 102 (3) (2020) https://doi.org/10.1103/PhysRevE.102.032132
Polymer collapse transition: a view from the complex fugacity plane
Milan Knežević and Miloš Knežević Journal of Physics A: Mathematical and Theoretical 52 (12) 125002 (2019) https://doi.org/10.1088/1751-8121/ab05ec
Solution of semi-flexible self-avoiding trails on a Husimi lattice built with squares
Tiago J Oliveira, Wellington G Dantas, Thomas Prellberg and Jürgen F Stilck Journal of Physics A: Mathematical and Theoretical 51 (5) 054001 (2018) https://doi.org/10.1088/1751-8121/aa9e0b
Transfer Matrix Algorithm for Computing the Geometric Quantities of a Square Lattice Polymer
Julian Lee Journal of the Korean Physical Society 73 (12) 1808 (2018) https://doi.org/10.3938/jkps.73.1808
Statics and dynamics of DNA knotting
Enzo Orlandini Journal of Physics A: Mathematical and Theoretical 51 (5) 053001 (2018) https://doi.org/10.1088/1751-8121/aa9a4c
Transfer matrix algorithm for computing the exact partition function of a square lattice polymer
Julian Lee Computer Physics Communications 228 11 (2018) https://doi.org/10.1016/j.cpc.2018.03.022
Grand-canonical solution of semiflexible self-avoiding trails on the Bethe lattice
W. G. Dantas, Tiago J. Oliveira, Jürgen F. Stilck and Thomas Prellberg Physical Review E 95 (2) (2017) https://doi.org/10.1103/PhysRevE.95.022132
Universality class of the two-dimensional polymer collapse transition
Adam Nahum Physical Review E 93 (5) (2016) https://doi.org/10.1103/PhysRevE.93.052502
Scaling Law of the Disjoining Pressure Reveals 2D Structure of Polymeric Fluids
Armando Gama Goicochea and Elías Pérez Macromolecular Chemistry and Physics 216 (10) 1076 (2015) https://doi.org/10.1002/macp.201400623
Interacting elastic lattice polymers: A study of the free energy of globular rings
M. Baiesi and E. Orlandini Physical Review E 89 (6) (2014) https://doi.org/10.1103/PhysRevE.89.062601
Exact partition functions of a polymer on a square lattice up to chain length 38
Jae Hwan Lee, Seung-Yeon Kim and Julian Lee Journal of Physics: Conference Series 454 012083 (2013) https://doi.org/10.1088/1742-6596/454/1/012083
Flory theory for polymers
Somendra M Bhattacharjee, Achille Giacometti and Amos Maritan Journal of Physics: Condensed Matter 25 (50) 503101 (2013) https://doi.org/10.1088/0953-8984/25/50/503101
Partition function zeros of a square-lattice homopolymer with nearest- and next-nearest-neighbor interactions
Jae Hwan Lee, Seung-Yeon Kim and Julian Lee Physical Review E 87 (5) (2013) https://doi.org/10.1103/PhysRevE.87.052601
The Θ points of interacting self-avoiding walks and rings on a 2D square lattice
M Ponmurugan and S V M Satyanarayana Journal of Statistical Mechanics: Theory and Experiment 2012 (06) P06010 (2012) https://doi.org/10.1088/1742-5468/2012/06/P06010
flatIGW — An inverse algorithm to compute the density of states of lattice self avoiding walks
M. Ponmurugan, V. Sridhar, S.L. Narasimhan and K.P.N. Murthy Physica A: Statistical Mechanics and its Applications 390 (7) 1258 (2011) https://doi.org/10.1016/j.physa.2010.11.023
Collapse transition of a square-lattice polymer with next nearest-neighbor interaction
Jae Hwan Lee, Seung-Yeon Kim and Julian Lee The Journal of Chemical Physics 135 (20) (2011) https://doi.org/10.1063/1.3663712
Geometrical properties of two-dimensional interacting self-avoiding walks at the θ-point
Sergio Caracciolo, Marco Gherardi, Mauro Papinutto and Andrea Pelissetto Journal of Physics A: Mathematical and Theoretical 44 (11) 115004 (2011) https://doi.org/10.1088/1751-8113/44/11/115004
Parallel algorithm for calculation of the exact partition function of a lattice polymer
Jae Hwan Lee, Seung-Yeon Kim and Julian Lee Computer Physics Communications 182 (4) 1027 (2011) https://doi.org/10.1016/j.cpc.2011.01.004
Exact partition function zeros and the collapse transition of a two-dimensional lattice polymer
Jae Hwan Lee, Seung-Yeon Kim and Julian Lee The Journal of Chemical Physics 133 (11) (2010) https://doi.org/10.1063/1.3486176
Elastic lattice polymers
M. Baiesi, G. T. Barkema and E. Carlon Physical Review E 81 (6) (2010) https://doi.org/10.1103/PhysRevE.81.061801
Two-dimensional lattice polymers: Adaptive windows simulations
A.G. Cunha-Netto, Ronald Dickman and A.A. Caparica Computer Physics Communications 180 (4) 583 (2009) https://doi.org/10.1016/j.cpc.2008.12.015
Monte Carlo methods for the self-avoiding walk
E J Janse van Rensburg Journal of Physics A: Mathematical and Theoretical 42 (32) 323001 (2009) https://doi.org/10.1088/1751-8113/42/32/323001
Atmospheric collapse in self-avoiding walks: a numerical study using GARM
J Alvarez, M Gara, E J Janse van Rensburg and A Rechnitzer Journal of Statistical Mechanics: Theory and Experiment 2009 (12) P12005 (2009) https://doi.org/10.1088/1742-5468/2009/12/P12005
Generalized atmospheric Rosenbluth methods (GARM)
A Rechnitzer and E J Janse van Rensburg Journal of Physics A: Mathematical and Theoretical 41 (44) 442002 (2008) https://doi.org/10.1088/1751-8113/41/44/442002
Simulating the collapse transition of a two-dimensional semiflexible lattice polymer
Jie Zhou, Zhong-Can Ou-Yang and Haijun Zhou The Journal of Chemical Physics 128 (12) (2008) https://doi.org/10.1063/1.2842064
Hamiltonian dynamics of homopolymer chain models
Alessandro Mossa, Marco Pettini and Cecilia Clementi Physical Review E 74 (4) (2006) https://doi.org/10.1103/PhysRevE.74.041805
Interacting growth walk on a honeycomb lattice
S.L. Narasimhan, V. Sridhar and K.P.N. Murthy Physica A: Statistical Mechanics and its Applications 320 51 (2003) https://doi.org/10.1016/S0378-4371(02)01532-7
Polymer θ-point as a knot delocalization transition
E. Orlandini, A. L. Stella and C. Vanderzande Physical Review E 68 (3) (2003) https://doi.org/10.1103/PhysRevE.68.031804
Zipping transition in a model of two crosslinked polymers
Peter Leoni, Carlo Vanderzande and Luc Vandeurzen Journal of Physics A: Mathematical and General 34 (46) 9777 (2001) https://doi.org/10.1088/0305-4470/34/46/302
Bethe approximation for self-interacting lattice trees
P. De Los Rios, S Lise and A Pelizzola Europhysics Letters (EPL) 53 (2) 176 (2001) https://doi.org/10.1209/epl/i2001-00133-6
Zipping and collapse of diblock copolymers
Marco Baiesi, Enrico Carlon, Enzo Orlandini and Attilio L. Stella Physical Review E 63 (4) (2001) https://doi.org/10.1103/PhysRevE.63.041801
Two-dimensional self-avoiding walk with hydrogen-like bonding: phase diagram and critical behaviour
D P Foster and F Seno Journal of Physics A: Mathematical and General 34 (47) 9939 (2001) https://doi.org/10.1088/0305-4470/34/47/302
Interacting growth walk: A model for generating compact self-avoiding walks
S. L. Narasimhan, P. S. R. Krishna, K. P. N. Murthy and M. Ramanadham Physical Review E 65 (1) (2001) https://doi.org/10.1103/PhysRevE.65.010801
A Born–Green–Yvon integral equation theory for self-interacting lattice polymers
Mark P. Taylor and J. E. G. Lipson The Journal of Chemical Physics 109 (17) 7583 (1998) https://doi.org/10.1063/1.477380
Phase diagram and critical behaviour of homopolymers with steric frustration
Stefano Lise Journal of Physics A: Mathematical and General 31 (29) 6183 (1998) https://doi.org/10.1088/0305-4470/31/29/010
Numerical Methods for Polymeric Systems
Enzo Orlandini The IMA Volumes in Mathematics and its Applications, Numerical Methods for Polymeric Systems 102 33 (1998) https://doi.org/10.1007/978-1-4612-1704-6_3
Exact enumeration study of free energies of interacting polygons and walks in two dimensions
D Bennett-Wood, I G Enting, D S Gaunt, et al. Journal of Physics A: Mathematical and General 31 (20) 4725 (1998) https://doi.org/10.1088/0305-4470/31/20/010
Two-dimensional polymers with random short-range interactions
Ido Golding and Yacov Kantor Physical Review E 56 (2) R1318 (1997) https://doi.org/10.1103/PhysRevE.56.R1318
Computer Simulation Studies in Condensed-Matter Physics IX
I. Chang and H. Meirovitch Springer Proceedings in Physics, Computer Simulation Studies in Condensed-Matter Physics IX 82 139 (1997) https://doi.org/10.1007/978-3-642-60597-0_14
Universality for interacting oriented self-avoiding walk: A transfer matrix calculation
A. Trovato and F. Seno Physical Review E 56 (1) 131 (1997) https://doi.org/10.1103/PhysRevE.56.131
The collapse transition of a single polymer chain in two and three dimensions: A Monte Carlo study
M. Wittkop, S. Kreitmeier and D. Göritz The Journal of Chemical Physics 104 (9) 3373 (1996) https://doi.org/10.1063/1.471041
Phase diagram of branched polymer collapse
Malte Henkel and Flavio Seno Physical Review E 53 (4) 3662 (1996) https://doi.org/10.1103/PhysRevE.53.3662
Optimal Protein Design Procedure
Flavio Seno, Michele Vendruscolo, Amos Maritan and Jayanth R. Banavar Physical Review Letters 77 (9) 1901 (1996) https://doi.org/10.1103/PhysRevLett.77.1901
Interacting self-avoiding walks and polygons in three dimensions
M C Tesi, E J Janse van Rensburg, E Orlandini and S G Whittington Journal of Physics A: Mathematical and General 29 (10) 2451 (1996) https://doi.org/10.1088/0305-4470/29/10/023
Linear polymers with competing interactions: Swollen linear, swollen branched, and compact scaling regimes
R. Dekeyser, E. Orlandini, A. L. Stella and M. C. Tesi Physical Review E 52 (5) 5214 (1995) https://doi.org/10.1103/PhysRevE.52.5214
Statistics of self-avoiding walks on random lattices
K. Barat and Bikas K. Chakrabarti Physics Reports 258 (6) 377 (1995) https://doi.org/10.1016/0370-1573(95)00009-6
Crossover in smart kinetic growth walks
D. Bennett-Wood, A.L. Owczarek and T. Prellberg Physica A: Statistical Mechanics and its Applications 206 (3-4) 283 (1994) https://doi.org/10.1016/0378-4371(94)90307-7
Manhattan lattice Theta -point exponents from kinetic growth walks and exact results from the Nienhuis O(n) model
T Prellberg and A L Owczarek Journal of Physics A: Mathematical and General 27 (6) 1811 (1994) https://doi.org/10.1088/0305-4470/27/6/009
A scaling theory of the collapse transition in geometric cluster models of polymers and vesicles
R Brak, A L Owczarek and T Prellberg Journal of Physics A: Mathematical and General 26 (18) 4565 (1993) https://doi.org/10.1088/0305-4470/26/18/022
Core-electron spectra and electronic structure ofCeNbS3
Youichi Ohno Physical Review B 48 (8) 5515 (1993) https://doi.org/10.1103/PhysRevB.48.5515
Collapse transition of self-avoiding walks on a square lattice in the bulk and near a linear wall: The universality classes of the θ and θ’ points
Iksoo Chang and Hagai Meirovitch Physical Review E 48 (5) 3656 (1993) https://doi.org/10.1103/PhysRevE.48.3656
Boundary critical behavior ofd=2 self-avoiding walks on correlated and uncorrelated vacancies
Attilio L. Stella, Flavio Seno and Carlo Vanderzande Journal of Statistical Physics 73 (1-2) 21 (1993) https://doi.org/10.1007/BF01052749
A simple estimate of the polymer theta‐point on different lattices
Krishna Barat Macromolecular Theory and Simulations 2 (5) 637 (1993) https://doi.org/10.1002/mats.1993.040020502
Surface phase transitions in polymer systems
K. De'Bell and Turab Lookman Reviews of Modern Physics 65 (1) 87 (1993) https://doi.org/10.1103/RevModPhys.65.87
Surface critical exponents of self-avoiding walks on a square lattice with an adsorbing linear boundary: A computer simulation study
Hagai Meirovitch and Iksoo Chang Physical Review E 48 (3) 1960 (1993) https://doi.org/10.1103/PhysRevE.48.1960
Equation of state of two-dimensional lattice chains at the theta point
Ronald Dickman The Journal of Chemical Physics 96 (2) 1516 (1992) https://doi.org/10.1063/1.462135
θ-point temperature and exponents for the bond fluctuation model
Sergey V. Buldyrev and Francesco Sciortino Physica A: Statistical Mechanics and its Applications 182 (3) 346 (1992) https://doi.org/10.1016/0378-4371(92)90348-T
The Monte Carlo Method in Condensed Matter Physics
Artur Baumgärtner Topics in Applied Physics, The Monte Carlo Method in Condensed Matter Physics 71 285 (1992) https://doi.org/10.1007/3-540-60174-0_9
Collapse from linear to branched polymer behavior
E. Orlandini, F. Seno, A. L. Stella and M. C. Tesi Physical Review Letters 68 (4) 488 (1992) https://doi.org/10.1103/PhysRevLett.68.488
Surface critical exponents for models of polymer collapse and adsorption: the universality of the Theta and Theta ' points
D P Foster, E Orlandini and M C Tesi Journal of Physics A: Mathematical and General 25 (21) L1211 (1992) https://doi.org/10.1088/0305-4470/25/21/002
Surface critical exponents of self-avoiding walks and trails on a square lattice: The universality classes of the θ and θ’ points
Iksoo Chang and Hagai Meirovitch Physical Review Letters 69 (15) 2232 (1992) https://doi.org/10.1103/PhysRevLett.69.2232
The Monte Carlo Method in Condensed Matter Physics
Artur Baumgärtner Topics in Applied Physics, The Monte Carlo Method in Condensed Matter Physics 71 285 (1992) https://doi.org/10.1007/978-3-662-02855-1_9
The effect of attractive monomer-monomer interactions on adsorption of a polymer chain
A R Veal, J M Yeomans and G Jug Journal of Physics A: Mathematical and General 24 (4) 827 (1991) https://doi.org/10.1088/0305-4470/24/4/016
Universality of properties of coil-globule transitions in different two-dimensional lattice models of a macromolecule
T.M. Birshtein and S.V. Buldyrev Polymer 32 (18) 3387 (1991) https://doi.org/10.1016/0032-3861(91)90544-S
Critical behavior at the theta point of self-avoiding walks on a Manhattan lattice
S L A de Queiroz and J M Yeomans Journal of Physics A: Mathematical and General 24 (16) L933 (1991) https://doi.org/10.1088/0305-4470/24/16/009
Two Interacting Directed Polymers: Exact Solution
F Iglói Europhysics Letters (EPL) 16 (2) 171 (1991) https://doi.org/10.1209/0295-5075/16/2/009
On the behaviour of collapsing linear and branched polymers
R. Brak, A. J. Guttmann and S. G. Whittington Journal of Mathematical Chemistry 8 (1) 255 (1991) https://doi.org/10.1007/BF01166941
Collapse transition of directed polymers: Exact results
Ferenc Iglói Physical Review A 43 (6) 3194 (1991) https://doi.org/10.1103/PhysRevA.43.3194
Self-avoiding walks in the presence of strongly correlated, annealed vacancies
Flavio Seno, Attilio Stella and Carlo Vanderzande Physical Review Letters 65 (23) 2897 (1990) https://doi.org/10.1103/PhysRevLett.65.2897
Analysis of series with stochastic coefficients
R. Dekeyser, F. Iglói, F. Mallezie and F. Seno Physical Review A 42 (4) 1923 (1990) https://doi.org/10.1103/PhysRevA.42.1923
Self-avoiding rings at the θ point
Dominique Maes and Carlo Vanderzande Physical Review A 41 (6) 3074 (1990) https://doi.org/10.1103/PhysRevA.41.3074
Exactθpoint and exponents for two models of polymer chains in two dimensions
R. Mark Bradley Physical Review A 41 (2) 914 (1990) https://doi.org/10.1103/PhysRevA.41.914
Universal amplitudes ratio at the collapse transition of polymers in two dimensions
I S Chang, Y Shapir and H Meirovitch Journal of Physics A: Mathematical and General 23 (11) L537 (1990) https://doi.org/10.1088/0305-4470/23/11/004
Tricritical trails on a square lattice with impenetrable linear boundary: Computer simulation and analytic bounds
I. S. Chang, H. Meirovitch and Y. Shapir Physical Review A 41 (4) 1808 (1990) https://doi.org/10.1103/PhysRevA.41.1808
Collapse transition of self-avoiding walks and trails by real-space renormalization
Kang Wu and R. Mark Bradley Physical Review A 41 (12) 6845 (1990) https://doi.org/10.1103/PhysRevA.41.6845
Coil-globule transition temperature enhancement in a polymer molecule adsorbed to a wall
S Cattarinussi and G Jug Journal of Physics A: Mathematical and General 23 (12) 2701 (1990) https://doi.org/10.1088/0305-4470/23/12/043
Computer simulation study of the θ-point in three dimensions. I. Self-avoiding walks on a simple cubic lattice
Hagai Meirovitch and H. A. Lim The Journal of Chemical Physics 92 (8) 5144 (1990) https://doi.org/10.1063/1.458548
Statistical mechanics of polymer networks of any topology
Bertrand Duplantier Journal of Statistical Physics 54 (3-4) 581 (1989) https://doi.org/10.1007/BF01019770
Coarse-grained Flory approximation for a polymer chain at theFTHETApoint in two dimensions
S. L. A. de Queiroz Physical Review A 39 (1) 430 (1989) https://doi.org/10.1103/PhysRevA.39.430
Surface exponents of trails in two dimensions at tricriticality: Computer simulation study
H. Meirovitch, I. S. Chang and Y. Shapir Physical Review A 40 (5) 2879 (1989) https://doi.org/10.1103/PhysRevA.40.2879
Real space renormalization group approach to the theta point of a linear polymer in 2 and 3 dimensions
A. Maritan, F. Seno and A.L. Stella Physica A: Statistical Mechanics and its Applications 156 (2) 679 (1989) https://doi.org/10.1016/0378-4371(89)90087-3
Exactθpoint and exponents for polymer chains on an oriented two-dimensional lattice
R. Mark Bradley Physical Review A 39 (7) 3738 (1989) https://doi.org/10.1103/PhysRevA.39.3738
Conduction and connection properties of self-avoiding walks with bridges
F. Seno and A. L. Stella Physical Review A 40 (8) 4704 (1989) https://doi.org/10.1103/PhysRevA.40.4704
The collapse transition of self-avoiding walks on a square lattice: A computer simulation study
H. Meirovitch and H. A. Lim The Journal of Chemical Physics 91 (4) 2544 (1989) https://doi.org/10.1063/1.457014
Computer simulation of trails on a square lattice. II. Finite temperatures and the collapse transition
H. Meirovitch and H. A. Lim Physical Review A 39 (8) 4186 (1989) https://doi.org/10.1103/PhysRevA.39.4186
Fractal Dynamics
Raf Dekeyser, Andrzej Komoda, Amos Maritan and Attilio Stella Physica Scripta T29 230 (1989) https://doi.org/10.1088/0031-8949/1989/T29/044
FTHETApoint exponents of polymers ind=2
H. Meirovitch and H. A. Lim Physical Review Letters 62 (22) 2640 (1989) https://doi.org/10.1103/PhysRevLett.62.2640
Universality classes of theθandθ’points
Peter H. Poole, Antonio Coniglio, Naeem Jan and H. Eugene Stanley Physical Review B 39 (1) 495 (1989) https://doi.org/10.1103/PhysRevB.39.495
Stability of the polymerΘpoint in two dimensions
B. Duplantier and H. Saleur Physical Review Letters 62 (12) 1368 (1989) https://doi.org/10.1103/PhysRevLett.62.1368
Duplantier and Saleur Reply
B. Duplantier and H. Saleur Physical Review Letters 61 (13) 1521 (1988) https://doi.org/10.1103/PhysRevLett.61.1521
Universalities in Condensed Matter
A. Stella Springer Proceedings in Physics, Universalities in Condensed Matter 32 191 (1988) https://doi.org/10.1007/978-3-642-51005-2_38
Surface Exponents for a Linear Polymer at the
d
= 2 Θ-Point
F Seno and A. L Stella Europhysics Letters (EPL) 7 (7) 605 (1988) https://doi.org/10.1209/0295-5075/7/7/006
Universalities in Condensed Matter
B. Duplantier Springer Proceedings in Physics, Universalities in Condensed Matter 32 65 (1988) https://doi.org/10.1007/978-3-642-51005-2_13
Universality Class of thed=2 ΘPoint of Linear Polymers
F. Seno, A. L. Stella and C. Vanderzande Physical Review Letters 61 (13) 1520 (1988) https://doi.org/10.1103/PhysRevLett.61.1520