La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Thomas B. Kepler , L.F. Abbott
J. Phys. France, 49 10 (1988) 1657-1662
Citations de cet article :
103 articles | Pages :
Training neural networks with structured noise improves classification and generalization
Marco Benedetti and Enrico Ventura Journal of Physics A: Mathematical and Theoretical 57 (41) 415001 (2024) https://doi.org/10.1088/1751-8121/ad7b8f
Pavel Tolmachev and Jonathan H. Manton 1 (2020) https://doi.org/10.1109/IJCNN48605.2020.9207405
Properties of the Geometry of Solutions and Capacity of Multilayer Neural Networks with Rectified Linear Unit Activations
Carlo Baldassi, Enrico M. Malatesta and Riccardo Zecchina Physical Review Letters 123 (17) (2019) https://doi.org/10.1103/PhysRevLett.123.170602
Energy Efficient Sparse Connectivity from Imbalanced Synaptic Plasticity Rules
João Sacramento, Andreas Wichert, Mark C. W. van Rossum and Peter E. Latham PLOS Computational Biology 11 (6) e1004265 (2015) https://doi.org/10.1371/journal.pcbi.1004265
Spatially distributed cellular neural networks
Varsha Bhambhani, Luis Valbuena‐Reyes and Herbert Tanner International Journal of Intelligent Computing and Cybernetics 4 (4) 465 (2011) https://doi.org/10.1108/17563781111186752
A Simple Derivation of a Bound on the Perceptron Margin Using Singular Value Decomposition
Omri Barak and Mattia Rigotti Neural Computation 23 (8) 1935 (2011) https://doi.org/10.1162/NECO_a_00152
Varsha Bhambhani and Herbert G. Tanner 3926 (2010) https://doi.org/10.1109/CDC.2010.5718073
High capacity, small world associative memory models
Neil Davey, Lee Calcraft and Rod Adams Connection Science 18 (3) 247 (2006) https://doi.org/10.1080/09540090600639339
O.K. Dekhtyarenko 2 1178 (2005) https://doi.org/10.1109/IJCNN.2005.1556020
High capacity recurrent associative memories
N. Davey, S.P. Hunt and R.G. Adams Neurocomputing 62 459 (2004) https://doi.org/10.1016/j.neucom.2004.02.007
High capacity associative memories and connection constraints
Neil Davey and Rod Adams Connection Science 16 (1) 47 (2004) https://doi.org/10.1080/09540090310001659981
Probing the basins of attraction of a recurrent neural network
M Heerema and W A van Leeuwen Journal of Physics A: Mathematical and General 33 (9) 1765 (2000) https://doi.org/10.1088/0305-4470/33/9/304
Retrieval Properties of a Hopfield Model with Random Asymmetric Interactions
Zhang Chengxiang, Chandan Dasgupta and Manoranjan P. Singh Neural Computation 12 (4) 865 (2000) https://doi.org/10.1162/089976600300015628
Optimally adapted multistate neural networks trained with noise
R. Erichsen and W. K. Theumann Physical Review E 59 (1) 947 (1999) https://doi.org/10.1103/PhysRevE.59.947
Canonical ensemble approach to graded-response perceptrons
D. Bollé and R. Erichsen Physical Review E 59 (3) 3386 (1999) https://doi.org/10.1103/PhysRevE.59.3386
Mixed states in a neural network model
Z. Tan and M. K. Ali Physical Review E 57 (4) R3739 (1998) https://doi.org/10.1103/PhysRevE.57.R3739
Pattern recognition in a neural network with chaos
Z. Tan and M. K. Ali Physical Review E 58 (3) 3649 (1998) https://doi.org/10.1103/PhysRevE.58.3649
Exact dynamics in feedforward neural networks
K. Y. M Wong Europhysics Letters (EPL) 38 (8) 631 (1997) https://doi.org/10.1209/epl/i1997-00295-7
Multivalley structure of attractor neural networks
C Rodrigues Neto and J F Fontanari Journal of Physics A: Mathematical and General 30 (22) 7945 (1997) https://doi.org/10.1088/0305-4470/30/22/028
Retrieval properties of diluted attractor neural networks
C Rodrigues Neto and J F Fontanari Journal of Physics A: Mathematical and General 29 (12) 3041 (1996) https://doi.org/10.1088/0305-4470/29/12/012
Correlation of internal representations in feed-forward neural networks
A Engel Journal of Physics A: Mathematical and General 29 (13) L323 (1996) https://doi.org/10.1088/0305-4470/29/13/003
Using Features for the Storage of Patterns in a Fully Connected Net
S. Coombes and J.G. Taylor Neural Networks 9 (5) 837 (1996) https://doi.org/10.1016/0893-6080(95)00113-1
Weight space structure and generalization in the reversed-wedge perceptron
L Reimers and A Engel Journal of Physics A: Mathematical and General 29 (14) 3923 (1996) https://doi.org/10.1088/0305-4470/29/14/017
Dynamics of a neural network model with finite connectivity and cycle stored patterns
Daoyun Ji, Beilai Hu and Tianlun Chen Physica A: Statistical Mechanics and its Applications 229 (2) 147 (1996) https://doi.org/10.1016/0378-4371(95)00468-8
Models of Neural Networks I
Eytan Domany and Ronny Meir Physics of Neural Networks, Models of Neural Networks I 317 (1995) https://doi.org/10.1007/978-3-642-79814-6_9
Models of Neural Networks I
Bruce M. Forrest and David J. Wallace Physics of Neural Networks, Models of Neural Networks I 129 (1995) https://doi.org/10.1007/978-3-642-79814-6_3
Models of Neural Networks I
Wolfgang Kinzel and Manfred Opper Physics of Neural Networks, Models of Neural Networks I 157 (1995) https://doi.org/10.1007/978-3-642-79814-6_4
Dynamics of Ising random-bond models: neural network and random-anisotropy-axis model
D R C Dominguez and W K Theumann Journal of Physics A: Mathematical and General 28 (1) 63 (1995) https://doi.org/10.1088/0305-4470/28/1/013
Learning and retrieval in attractor neural networks with noise
R Erichsen and W.K Theumann Physica A: Statistical Mechanics and its Applications 220 (3-4) 390 (1995) https://doi.org/10.1016/0378-4371(95)00182-7
Local fields in optimal perceptrons with correlated patterns
Thomas Schnelle Neural Networks 8 (3) 431 (1995) https://doi.org/10.1016/0893-6080(94)00087-3
ICANN ’94
R. Erichsen and W. K. Theumann ICANN ’94 381 (1994) https://doi.org/10.1007/978-1-4471-2097-1_88
Capacity of diluted multi-state neural networks
D Bolle and J van Mourik Journal of Physics A: Mathematical and General 27 (4) 1151 (1994) https://doi.org/10.1088/0305-4470/27/4/011
On the generalization ability of diluted perceptrons
P Kuhlmann and K -R Muller Journal of Physics A: Mathematical and General 27 (11) 3759 (1994) https://doi.org/10.1088/0305-4470/27/11/026
Dynamical phase transitions in the Little-Hopfield model
P de Felice, C Marangi, G Nardulli and G Pasquariello Journal of Physics A: Mathematical and General 27 (12) 4115 (1994) https://doi.org/10.1088/0305-4470/27/12/018
Improving recall in associative memories by dynamic threshold
Tao Wang Neural Networks 7 (9) 1379 (1994) https://doi.org/10.1016/0893-6080(94)90086-8
Attractor properties of dynamical systems: neural network models
K Y M Wong and C Ho Journal of Physics A: Mathematical and General 27 (15) 5167 (1994) https://doi.org/10.1088/0305-4470/27/15/017
The effects of lesions on the generalization ability of a perceptron
D M L Barbato and J F Fontanari Journal of Physics A: Mathematical and General 26 (8) 1847 (1993) https://doi.org/10.1088/0305-4470/26/8/013
Sign-constrained synapses and biased patterns in neural networks
R Raju Viswanathan Journal of Physics A: Mathematical and General 26 (22) 6195 (1993) https://doi.org/10.1088/0305-4470/26/22/020
The connections of large perceptrons
W A J J Wiegerinck and A C C Coolen Journal of Physics A: Mathematical and General 26 (11) 2535 (1993) https://doi.org/10.1088/0305-4470/26/11/007
Symmetry breaking in nonmonotonic neural networks
G Boffetta, R Monasson and R Zecchina Journal of Physics A: Mathematical and General 26 (12) L507 (1993) https://doi.org/10.1088/0305-4470/26/12/005
Perceptrons above saturation
P Majer, A Engel and A Zippelius Journal of Physics A: Mathematical and General 26 (24) 7405 (1993) https://doi.org/10.1088/0305-4470/26/24/015
Sparsely connected Hopfield networks for the recognition of correlated pattern sets
Thomas Stiefvater, Klaus-Robert Müller and Herbert Janssen Network: Computation in Neural Systems 4 (3) 313 (1993) https://doi.org/10.1088/0954-898X/4/3/005
Dynamics of neural networks with non-monotone activation function
P De Felice, C Marangi, G Nardulli, G Pasquariello and L Tedesco Network: Computation in Neural Systems 4 (1) 1 (1993) https://doi.org/10.1088/0954-898X/4/1/001
Optimal storage capacity of neural networks at finite temperatures
G M Shim, D Kim and M Y Choi Journal of Physics A: Mathematical and General 26 (15) 3741 (1993) https://doi.org/10.1088/0305-4470/26/15/024
Pattern selectivity in neural networks as a means of understanding basin structures
A Rau, K Y M Wong and D Sherrington Journal of Physics A: Mathematical and General 26 (12) 2901 (1993) https://doi.org/10.1088/0305-4470/26/12/027
Sparsely connected Hopfield networks for the recognition of correlated pattern sets
Thomas Stiefvater, Klaus-Robert Müller and Herbert Janssen Network: Computation in Neural Systems 4 (3) 313 (1993) https://doi.org/10.1088/0954-898X_4_3_005
Neural networks optimally trained with noisy data
K. Y. Michael Wong and David Sherrington Physical Review E 47 (6) 4465 (1993) https://doi.org/10.1103/PhysRevE.47.4465
K.-R. Muller, T. Stiefvater and H. Janben 889 (1993) https://doi.org/10.1109/ICNN.1993.298675
Noise-optimal binary-synapse neural networks
R W Penney and D Sherrington Journal of Physics A: Mathematical and General 26 (16) 3995 (1993) https://doi.org/10.1088/0305-4470/26/16/016
Dynamics of neural networks with non-monotone activation function
P De Felice, C Marangi, G Nardulli, G Pasquariello and L Tedesco Network: Computation in Neural Systems 4 (1) 1 (1993) https://doi.org/10.1088/0954-898X_4_1_001
Artificial Neural Networks
Klaus-Robert Müller and Andreas Waldenspuhl Artificial Neural Networks 961 (1992) https://doi.org/10.1016/B978-0-444-89488-5.50029-4
Competitive attraction in neural networks with sign-constrained weights
K Y M Wong and C Campbell Journal of Physics A: Mathematical and General 25 (8) 2227 (1992) https://doi.org/10.1088/0305-4470/25/8/033
Basins of attraction in a neural network model trained with external fields
H.W. Yau and D.J. Wallace Physica A: Statistical Mechanics and its Applications 185 (1-4) 471 (1992) https://doi.org/10.1016/0378-4371(92)90492-9
Properties of neural networks storing spatially correlated patterns
R Monasson Journal of Physics A: Mathematical and General 25 (13) 3701 (1992) https://doi.org/10.1088/0305-4470/25/13/019
Domains of attraction in neural network models with correlated patterns
E.R. Korutcheva Physics Letters A 169 (4) 269 (1992) https://doi.org/10.1016/0375-9601(92)90457-W
Pattern Selectivity in Optimized Neural Networks
A Rau, K. Y. M Wong and D Sherrington Europhysics Letters (EPL) 17 (7) 649 (1992) https://doi.org/10.1209/0295-5075/17/7/013
Domains of attraction and the density of static metastable states, in single-pattern iterated neural networks
T B Kepler Journal of Physics A: Mathematical and General 24 (5) 1083 (1991) https://doi.org/10.1088/0305-4470/24/5/022
Exchange splitting of epitaxial fcc Fe/Cu(100) versus bcc Fe/Ag(100)
F. Himpsel Physical Review Letters 67 (17) 2363 (1991) https://doi.org/10.1103/PhysRevLett.67.2363
Learning grey-toned patterns in neural networks
S Mertens, H M Kohler and S Bos Journal of Physics A: Mathematical and General 24 (20) 4941 (1991) https://doi.org/10.1088/0305-4470/24/20/023
Domains of attraction of neural networks at finite temperature
G Nardulli and G Pasquariello Journal of Physics A: Mathematical and General 24 (5) 1103 (1991) https://doi.org/10.1088/0305-4470/24/5/024
On the Relation Between Stability Parameters and Sizes of Domains of Attraction in Attractor Neural Networks
A. C. C Coolen Europhysics Letters (EPL) 16 (1) 73 (1991) https://doi.org/10.1209/0295-5075/16/1/013
N. Hendrich ii 437 (1991) https://doi.org/10.1109/IJCNN.1991.155372
Enlarging the attractor basins of neural networks with noisy external fields
H W Yau and D J Wallace Journal of Physics A: Mathematical and General 24 (23) 5639 (1991) https://doi.org/10.1088/0305-4470/24/23/026
Models of Neural Networks
Bruce M. Forrest and David J. Wallace Physics of Neural Networks, Models of Neural Networks 121 (1991) https://doi.org/10.1007/978-3-642-97171-6_3
Models of Neural Networks
Eytan Domany and Ronny Meir Physics of Neural Networks, Models of Neural Networks 307 (1991) https://doi.org/10.1007/978-3-642-97171-6_9
Associative memory in damaged neural networks
N Hendrich Journal of Physics A: Mathematical and General 24 (12) 2877 (1991) https://doi.org/10.1088/0305-4470/24/12/026
Artificial Neural Networks
H W Yau and D J Wallace Artificial Neural Networks 1135 (1991) https://doi.org/10.1016/B978-0-444-89178-5.50036-1
Sign-constrained linear learning and diluting in neural networks
H M Kohler and D Widmaier Journal of Physics A: Mathematical and General 24 (9) L495 (1991) https://doi.org/10.1088/0305-4470/24/9/008
External fields in attractor neural networks with different learning rules
A Rau, D Sherrington and K Y M Wong Journal of Physics A: Mathematical and General 24 (1) 313 (1991) https://doi.org/10.1088/0305-4470/24/1/037
Robustness and information capacity of learning rules for neutral network models
Th. Schnelle and A. Engel Physics Letters A 156 (1-2) 69 (1991) https://doi.org/10.1016/0375-9601(91)90128-U
Gardner-Derrida neural networks with correlated patterns
W K Theumann and R Erichsen Journal of Physics A: Mathematical and General 24 (10) L565 (1991) https://doi.org/10.1088/0305-4470/24/10/013
Models of Neural Networks
Wolfgang Kinzel and Manfred Opper Physics of Neural Networks, Models of Neural Networks 149 (1991) https://doi.org/10.1007/978-3-642-97171-6_4
On the storage capacity for temporal pattern sequences in networks with delays
K. Bauer and U. Krey Zeitschrift f�r Physik B Condensed Matter 84 (1) 131 (1991) https://doi.org/10.1007/BF01453766
Learning and retrieval in attractor neural networks above saturation
M Griniasty and H Gutfreund Journal of Physics A: Mathematical and General 24 (3) 715 (1991) https://doi.org/10.1088/0305-4470/24/3/030
A Komoda, R Serneels, K Y M Wong and M Bouten Journal of Physics A: Mathematical and General 24 (13) L743 (1991) https://doi.org/10.1088/0305-4470/24/13/008
Norman Hendrich 864 (1990) https://doi.org/10.1007/978-94-009-0643-3_114
Training noise adaptation in attractor neural networks
K Y M Wong and D Sherrington Journal of Physics A: Mathematical and General 23 (4) L175 (1990) https://doi.org/10.1088/0305-4470/23/4/009
Effect of the Learning Procedure on Local Stabilities in Neural Networks
R Aloni-Lavi, H Gutfreund and I Yekutieli Europhysics Letters (EPL) 13 (7) 665 (1990) https://doi.org/10.1209/0295-5075/13/7/016
Statistical Mechanics of Neural Networks
K. Y. M. Wong and D Sherrington Lecture Notes in Physics, Statistical Mechanics of Neural Networks 368 105 (1990) https://doi.org/10.1007/3540532676_44
Retrieval phase diagrams for attractor neural networks with optimal interactions
D J Amit, M R Evans, H Horner and K Y M Wong Journal of Physics A: Mathematical and General 23 (14) 3361 (1990) https://doi.org/10.1088/0305-4470/23/14/032
Quenched versus annealed dilution in neural networks
M Bouten, A Engel, A Komoda and R Serneels Journal of Physics A: Mathematical and General 23 (20) 4643 (1990) https://doi.org/10.1088/0305-4470/23/20/025
Optimally adapted attractor neural networks in the presence of noise
K Y M Wong and D Sherrington Journal of Physics A: Mathematical and General 23 (20) 4659 (1990) https://doi.org/10.1088/0305-4470/23/20/026
Neural networks with many-neuron interactions
G.A. Kohring Journal de Physique 51 (2) 145 (1990) https://doi.org/10.1051/jphys:01990005102014500
Retrieval dynamics of neural networks constructed from local and nonlocal learning rules
J. Krätzschmar and G.A. Kohring Journal de Physique 51 (3) 223 (1990) https://doi.org/10.1051/jphys:01990005103022300
Learning in neural network memories
L F Abbott Network: Computation in Neural Systems 1 (1) 105 (1990) https://doi.org/10.1088/0954-898X_1_1_008
International Neural Network Conference
G. Nardulli and G. Pasquariello International Neural Network Conference 973 (1990) https://doi.org/10.1007/978-94-009-0643-3_149
Statistical Mechanics of Neural Networks
M. Bouten Lecture Notes in Physics, Statistical Mechanics of Neural Networks 368 225 (1990) https://doi.org/10.1007/3540532676_52
Prosopagnosia in high capacity neural networks storing uncorrelated classes
S. Franz, D.J. Amit and M. A. Virasoro Journal de Physique 51 (5) 387 (1990) https://doi.org/10.1051/jphys:01990005105038700
Enlarged basin of attraction in neural networks with persistent stimuli
A. Engel, M. Bouten, A. Komoda and R. Serneels Physical Review A 42 (8) 4998 (1990) https://doi.org/10.1103/PhysRevA.42.4998
Statistical Mechanics of Neural Networks
C. Campbell and K. Y. M. Wong Lecture Notes in Physics, Statistical Mechanics of Neural Networks 368 237 (1990) https://doi.org/10.1007/3540532676_53
Distribution of Internal Fields and Dynamics of Neural Networks
R. D Henkel and M Opper Europhysics Letters (EPL) 11 (5) 403 (1990) https://doi.org/10.1209/0295-5075/11/5/003
Optimal basins of attraction in randomly sparse neural network models
E Gardner Journal of Physics A: Mathematical and General 22 (12) 1969 (1989) https://doi.org/10.1088/0305-4470/22/12/002
Model for Epitaxial growth of Cobalt on CU(100)
Dimitri D. Vvedensky and Shaun Clarke MRS Proceedings 160 (1989) https://doi.org/10.1557/PROC-160-221
Recognition with self-control in neural networks
Maciej Lewenstein and Andrzej Nowak Physical Review A 40 (8) 4652 (1989) https://doi.org/10.1103/PhysRevA.40.4652
Vectorized multi-site coding for nearest-neighbour neural networks
B.M. Forrest Journal de Physique 50 (15) 2003 (1989) https://doi.org/10.1051/jphys:0198900500150200300
The interaction space of neural networks with sign-constrained synapses
D J Amit, C Campbell and K Y M Wong Journal of Physics A: Mathematical and General 22 (21) 4687 (1989) https://doi.org/10.1088/0305-4470/22/21/030
Universality in the space of interactions for network models
L F Abbott and T B Kepler Journal of Physics A: Mathematical and General 22 (12) 2031 (1989) https://doi.org/10.1088/0305-4470/22/12/008
Optimal learning in neural network memories
L F Abbott and T B Kepler Journal of Physics A: Mathematical and General 22 (14) L711 (1989) https://doi.org/10.1088/0305-4470/22/14/011
Size of the domains of attraction in the Hopfield model
A. C. C. Coolen, H. J. J. Jonker and Th. W. Ruijgrok Physical Review A 40 (9) 5295 (1989) https://doi.org/10.1103/PhysRevA.40.5295
Perceptron learning with sign-constrained weights
D J Amit, K Y M Wong and C Campbell Journal of Physics A: Mathematical and General 22 (12) 2039 (1989) https://doi.org/10.1088/0305-4470/22/12/009
Pages :
1 à 100 sur 103 articles