La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
N.B. Tufillaro , T.M. Mello , Y.M. Choi , A.M. Albano
J. Phys. France, 47 9 (1986) 1477-1482
Citations de cet article :
70 articles
Spiky structure in velocity distribution for a ball bouncing on a vertically vibrating plate
D. W. Zhou, J. J. Ren and Z. H. Jiang The European Physical Journal Plus 140 (2) (2025) https://doi.org/10.1140/epjp/s13360-025-05998-7
Inelastic bouncing of a spherical ball in the presence of quadratic drag with application to sports balls
Marko V. Lubarda and Vlado A. Lubarda Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology 238 (1) 3 (2024) https://doi.org/10.1177/17543371221086190
Parameter identification of vibratory conveying systems including statistical part behavior
Simon Schiller, Dominik Perchtold, Andreas Eitzlmayr, Peter Gruber and Daniel Six Discover Mechanical Engineering 3 (1) (2024) https://doi.org/10.1007/s44245-024-00058-3
Extension of the bouncing ball model to a vibratory conveying system
Simon Schiller, Wolfgang Steiner and Martin Schagerl Nonlinear Dynamics 111 (21) 19685 (2023) https://doi.org/10.1007/s11071-023-08911-y
Nonlinear and chaotic dynamics of a vibratory conveying system
Simon Schiller, Dominik Perchtold and Wolfgang Steiner Nonlinear Dynamics 111 (11) 9799 (2023) https://doi.org/10.1007/s11071-023-08363-4
Revealing the mechanism causing stepwise maximum bounce height changes in a bouncing ball system
Shu Karube, Yuki Uemura, Takuji Kousaka and Naohiko Inaba AIP Advances 12 (6) (2022) https://doi.org/10.1063/5.0083804
Faraday waves under perpendicular electric field and their application to the walking droplet phenomenon
Raúl Fernández-Mateo and Alberto T. Pérez Physics of Fluids 33 (1) (2021) https://doi.org/10.1063/5.0028118
Dynamical aspects of a bouncing ball in a nonhomogeneous field
Felipe Augusto O. Silveira, Sidiney G. Alves, Edson D. Leonel and Denis G. Ladeira Physical Review E 103 (6) (2021) https://doi.org/10.1103/PhysRevE.103.062205
Paradoxical simulation results of chaos-like chattering in the bouncing ball system
Kilian Schindler and Remco I. Leine Physica D: Nonlinear Phenomena 419 132854 (2021) https://doi.org/10.1016/j.physd.2021.132854
Energy level structure of chaotic motion in bouncing ball system
Z.H. Jiang and D.W. Zhou Physica D: Nonlinear Phenomena 427 133023 (2021) https://doi.org/10.1016/j.physd.2021.133023
Informatics in Control, Automation and Robotics
Guillaume Avrin, Maria Makarov, Pedro Rodriguez-Ayerbe and Isabelle A. Siegler Lecture Notes in Electrical Engineering, Informatics in Control, Automation and Robotics 495 719 (2020) https://doi.org/10.1007/978-3-030-11292-9_36
Experimental and numerical study of nonsmooth maximum bounce height changes in a bouncing ball system
Shu Karube, Takuji Kousaka and Naohiko Inaba Chaos: An Interdisciplinary Journal of Nonlinear Science 30 (10) (2020) https://doi.org/10.1063/5.0009343
Dissipative properties for a ball bouncing on a vertically vibrating plate
Z.H. Jiang, Z.J. Liang, D.W. Zhou and Y.J. Deng Physica A: Statistical Mechanics and its Applications 548 123875 (2020) https://doi.org/10.1016/j.physa.2019.123875
An impact model of a ball bouncing on a flexible beam
L. Demeio and S. Lenci Meccanica 55 (12) 2439 (2020) https://doi.org/10.1007/s11012-020-01147-9
Dynamic analysis of a ball bouncing on a flexible beam
L. Demeio and S. Lenci Journal of Sound and Vibration 441 152 (2019) https://doi.org/10.1016/j.jsv.2018.10.024
Stability Analysis Using Monodromy Matrix for Impacting Systems
Hiroyuki ASAHARA and Takuji KOUSAKA IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E101.A (6) 904 (2018) https://doi.org/10.1587/transfun.E101.A.904
Effect of collision duration on the chaotic dynamics of a ball bouncing on a vertically vibrating plate
Z.H. Jiang, Z.J. Liang, A.C. Wu and R.H. Zheng Physica A: Statistical Mechanics and its Applications 494 380 (2018) https://doi.org/10.1016/j.physa.2017.12.062
The self-organization of ball bouncing
Guillaume Avrin, Isabelle A. Siegler, Maria Makarov and Pedro Rodriguez-Ayerbe Biological Cybernetics 112 (6) 509 (2018) https://doi.org/10.1007/s00422-018-0776-8
Nonlinear dynamics of excited plate immersed in granular matter
Lu Liu, Jian Li and Chunbo Wan Nonlinear Dynamics 91 (1) 147 (2018) https://doi.org/10.1007/s11071-017-3861-y
Energy decay in a tapped granular column: Can a one-dimensional toy model provide insight into fully three-dimensional systems?
C. R. K. Windows-Yule, D. L. Blackmore and A. D. Rosato Physical Review E 96 (4) (2017) https://doi.org/10.1103/PhysRevE.96.042902
Influence of Air on the Bouncing Dynamics of Shallow Vibrated Granular Beds: Kroll’s Model Predictions
Bruno V. Guerrero, Vladimir I. Idler and Iván J. Sánchez Industrial & Engineering Chemistry Research 55 (18) 5287 (2016) https://doi.org/10.1021/acs.iecr.5b04912
Ratcheting and tumbling motion of Vibrots
Christian Scholz, Sean D’Silva and Thorsten Pöschel New Journal of Physics 18 (12) 123001 (2016) https://doi.org/10.1088/1367-2630/18/12/123001
Rebecca Fenton Friesen, Michael Wiertlewski and J. Edward Colgate 167 (2016) https://doi.org/10.1109/HAPTICS.2016.7463172
Dynamical properties of a non‐autonomous bouncing ball model forced by non‐harmonic excitation
Marek Lampart and Jaroslav Zapoměl Mathematical Methods in the Applied Sciences 39 (16) 4923 (2016) https://doi.org/10.1002/mma.4186
Minimal topological chaos coexisting with a finite set of homoclinic and periodic orbits
Walter Huaraca and Valentín Mendoza Physica D: Nonlinear Phenomena 315 83 (2016) https://doi.org/10.1016/j.physd.2015.10.009
Numerical modelling of granular flows: a reality check
C. R. K. Windows-Yule, D. R. Tunuguntla and D. J. Parker Computational Particle Mechanics 3 (3) 311 (2016) https://doi.org/10.1007/s40571-015-0083-2
Stability of periodic modes and bifurcation behaviors in a bouncing-dimer system
Jiao Wang, Caishan Liu, Marian Wiercigroch, Chenghua Wang and Yongtao Shui Nonlinear Dynamics 86 (3) 1477 (2016) https://doi.org/10.1007/s11071-016-2973-0
Short granular chain under vibration: Spontaneous switching of states
Y.-C. Sun, H.-T. Fei, P.-C. Huang, et al. Physical Review E 93 (3) (2016) https://doi.org/10.1103/PhysRevE.93.032902
Resonance effects on the dynamics of dense granular beds: achieving optimal energy transfer in vibrated granular systems
C R K Windows-Yule, A D Rosato, A R Thornton and D J Parker New Journal of Physics 17 (2) 023015 (2015) https://doi.org/10.1088/1367-2630/17/2/023015
Crises in a dissipative bouncing ball model
André L.P. Livorati, Iberê L. Caldas, Carl P. Dettmann and Edson D. Leonel Physics Letters A 379 (43-44) 2830 (2015) https://doi.org/10.1016/j.physleta.2015.09.016
Accuracy of the non-relativistic approximation to relativistic probability densities for a low-speed weak-gravity system
Shiuan-Ni Liang and Boon Leong Lan The European Physical Journal Plus 130 (11) (2015) https://doi.org/10.1140/epjp/i2015-15233-y
Dan Shi, Yoan Civet and Yves Perriard 2170 (2014) https://doi.org/10.1109/ICEMS.2014.7013862
Dynamics of a Grain-Filled Ball on a Vibrating Plate
F. Pacheco-Vázquez, F. Ludewig and S. Dorbolo Physical Review Letters 113 (11) (2014) https://doi.org/10.1103/PhysRevLett.113.118001
Almost Super Stable Periodic Orbit in an Electric Impact Oscillator
Hiroyuki Asahara, Jun Hosokawa, Kazuyuki Aihara, Soumitro Banerjee and Takuji Kousaka IEICE Proceeding Series 1 832 (2014) https://doi.org/10.15248/proc.1.832
Bouncing ball dynamics: Simple model of motion of the table and sinusoidal motion
Andrzej Okniński and Bogusław Radziszewski International Journal of Non-Linear Mechanics 65 226 (2014) https://doi.org/10.1016/j.ijnonlinmec.2014.06.005
Non-stationary dynamics in the bouncing ball: A wavelet perspective
Abhinna K. Behera, A. N. Sekar Iyengar and Prasanta K. Panigrahi Chaos: An Interdisciplinary Journal of Nonlinear Science 24 (4) (2014) https://doi.org/10.1063/1.4896774
Ratchet rotation of a 3D dimer on a vibrating plate
Jiao Wang, Caishan Liu, Yan-Bin Jia and Daolin Ma The European Physical Journal E 37 (1) (2014) https://doi.org/10.1140/epje/i2014-14001-x
Subharmonic bifurcations and chaotic dynamics of an air damping completely inelastic bouncing ball
Hong Han, Zehui Jiang, Rui Zhang and Jing Lyu The European Physical Journal B 86 (12) (2013) https://doi.org/10.1140/epjb/e2013-40675-0
Comparison of Newtonian and Special-Relativistic Trajectories with the General-Relativistic Trajectory for a Low-Speed Weak-Gravity System
Shiuan-Ni Liang, Boon Leong Lan and Gerardo Adesso PLoS ONE 7 (4) e34720 (2012) https://doi.org/10.1371/journal.pone.0034720
Lift-Off Dynamics in a Simple Jumping Robot
Jeffrey Aguilar, Alex Lesov, Kurt Wiesenfeld and Daniel I. Goldman Physical Review Letters 109 (17) (2012) https://doi.org/10.1103/PhysRevLett.109.174301
The three-dimensional dynamics of the die throw
M. Kapitaniak, J. Strzalko, J. Grabski and T. Kapitaniak Chaos: An Interdisciplinary Journal of Nonlinear Science 22 (4) 047504 (2012) https://doi.org/10.1063/1.4746038
Akiko Takahashi, Hiroo Sekiya, Kazuyuki Aihara and Takuji Kousaka 2111 (2012) https://doi.org/10.1109/ISCAS.2012.6271702
REGULAR AND CHAOTIC DYNAMICS IN BOUNCING BALL MODELS
SEBASTIAN VOGEL and STEFAN J. LINZ International Journal of Bifurcation and Chaos 21 (03) 869 (2011) https://doi.org/10.1142/S0218127411028854
Newtonian versus general-relativistic prediction for the trajectory of a bouncing ball system
Shiuan-Ni Liang and Boon Leong Lan Results in Physics 1 (1) 36 (2011) https://doi.org/10.1016/j.rinp.2011.10.001
Bouncing ball problem: numerical behavior characterization
E E N Macau, M V Carneiro and J J Barroso Journal of Physics: Conference Series 246 012003 (2010) https://doi.org/10.1088/1742-6596/246/1/012003
Dynamics of a ball bouncing on a vibrated elastic membrane
B. Eichwald, M. Argentina, X. Noblin and F. Celestini Physical Review E 82 (1) (2010) https://doi.org/10.1103/PhysRevE.82.016203
Bouncing ball problem: Stability of the periodic modes
Joaquim J. Barroso, Marcus V. Carneiro and Elbert E. N. Macau Physical Review E 79 (2) (2009) https://doi.org/10.1103/PhysRevE.79.026206
Simulation of Inhomogeneous Columns of Beads under Vertical Vibration
Marcus V. Carneiro, Joaquim J. Barroso, Elbert E. N. Macau and Edson Denis Leonel Mathematical Problems in Engineering 2009 (1) (2009) https://doi.org/10.1155/2009/345947
Time resolved particle dynamics in granular convection
J.M. Pastor, D. Maza, I. Zuriguel, A. Garcimartín and J.-F. Boudet Physica D: Nonlinear Phenomena 232 (2) 128 (2007) https://doi.org/10.1016/j.physd.2007.06.005
First results on vibration feeding of small parts in the presence of adhesive forces
Jan‐Mark Vorstenbosch, Fabien Bourgeois, Sandra Koelemeijer Chollet and Marcel Tichem Assembly Automation 24 (2) 177 (2004) https://doi.org/10.1108/01445150410529964
Chaotic dynamics of an air-damped bouncing ball
M. A. Naylor, P. Sánchez and Michael R. Swift Physical Review E 66 (5) (2002) https://doi.org/10.1103/PhysRevE.66.057201
M.-O. Hongler, J. Jacot, P. Ney, F. Arrieta, O. Ryser, C. Gertsch, J.-L. Lopez and R. Marques 1 613 (2001) https://doi.org/10.1109/ETFA.2001.996421
Dynamics of an elastic ball bouncing on an oscillating plane and the oscillon
James M Hill, Michael J Jennings, Dong Vu To and Kiren A Williams Applied Mathematical Modelling 24 (10) 715 (2000) https://doi.org/10.1016/S0307-904X(00)00002-0
Physics of Dry Granular Media
A. Valance and D. Bideau Physics of Dry Granular Media 499 (1998) https://doi.org/10.1007/978-94-017-2653-5_36
Dynamics of a ball bouncing on a rough inclined line
Alexandre Valance and Daniel Bideau Physical Review E 57 (2) 1886 (1998) https://doi.org/10.1103/PhysRevE.57.1886
On the dynamics of mechanical milling in a vibratory mill
H. Huang, J. Pan and P.G. McCormick Materials Science and Engineering: A 232 (1-2) 55 (1997) https://doi.org/10.1016/S0921-5093(97)00084-1
Bifurcations and chaos for the quasiperiodic bouncing ball
César R. de Oliveira and Paulo S. Gonçalves Physical Review E 56 (4) 4868 (1997) https://doi.org/10.1103/PhysRevE.56.4868
Motion of a ball dropped onto a one-dimensional self-affine surface
Harold Auradou, Daniel Bideau, Alex Hansen and Knut Jø rgen Må lø y Journal of Physics A: Mathematical and General 30 (14) 4915 (1997) https://doi.org/10.1088/0305-4470/30/14/007
Braid analysis of a bouncing ball
Nicholas B. Tufillaro Physical Review E 50 (6) 4509 (1994) https://doi.org/10.1103/PhysRevE.50.4509
Chaotic and Stochastic Behaviour in Automatic Production Lines
Lecture Notes in Physics Monographs, Chaotic and Stochastic Behaviour in Automatic Production Lines 22 81 (1994) https://doi.org/10.1007/978-3-540-48448-6_7
Period-infinity periodic motions, chaos, and spatial coherence in a 10 degree of freedom impact oscillator
J.P. Cusumano and B.-Y. Bai Chaos, Solitons & Fractals 3 (5) 515 (1993) https://doi.org/10.1016/0960-0779(93)90003-J
Quantum bouncer with chaos
S. T. Dembiński, A. J. Makowski and P. Pepłowski Physical Review Letters 70 (8) 1093 (1993) https://doi.org/10.1103/PhysRevLett.70.1093
Chaotic Dynamics
J. P. van der Weele NATO ASI Series, Chaotic Dynamics 298 357 (1992) https://doi.org/10.1007/978-1-4615-3464-8_33
Anomalous chaotic transients and repellers of bouncing-ball dynamics
Marek Franaszek and Heikki M. Isomäki Physical Review A 43 (8) 4231 (1991) https://doi.org/10.1103/PhysRevA.43.4231
Dynamics and Stochastic Processes Theory and Applications
Max-Olivier Hongler Lecture Notes in Physics, Dynamics and Stochastic Processes Theory and Applications 355 142 (1990) https://doi.org/10.1007/3-540-52347-2_29
Numerical study of a model of vibro-transporter
M.-O. Hongler, P. Cartier and P. Flury Physics Letters A 135 (2) 106 (1989) https://doi.org/10.1016/0375-9601(89)90654-3
Direct evidence for the suppression of period doubling in the bouncing-ball model
Piotr Pierański Physical Review A 37 (5) 1782 (1988) https://doi.org/10.1103/PhysRevA.37.1782
Self-reanimating chaos in the bouncing-ball system
Zbigniew J. Kowalik, Marek Franaszek and Piotr Pierański Physical Review A 37 (10) 4016 (1988) https://doi.org/10.1103/PhysRevA.37.4016
Relative rotation rates for driven dynamical systems
H. G. Solari and R. Gilmore Physical Review A 37 (8) 3096 (1988) https://doi.org/10.1103/PhysRevA.37.3096
Suppression of period doubling in the dynamics of a bouncing ball
Kurt Wiesenfeld and Nicholas B. Tufillaro Physica D: Nonlinear Phenomena 26 (1-3) 321 (1987) https://doi.org/10.1016/0167-2789(87)90232-6