Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Inelastic bouncing of a spherical ball in the presence of quadratic drag with application to sports balls

Marko V. Lubarda and Vlado A. Lubarda
Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology 238 (1) 3 (2024)
https://doi.org/10.1177/17543371221086190

Parameter identification of vibratory conveying systems including statistical part behavior

Simon Schiller, Dominik Perchtold, Andreas Eitzlmayr, Peter Gruber and Daniel Six
Discover Mechanical Engineering 3 (1) (2024)
https://doi.org/10.1007/s44245-024-00058-3

Revealing the mechanism causing stepwise maximum bounce height changes in a bouncing ball system

Shu Karube, Yuki Uemura, Takuji Kousaka and Naohiko Inaba
AIP Advances 12 (6) (2022)
https://doi.org/10.1063/5.0083804

Faraday waves under perpendicular electric field and their application to the walking droplet phenomenon

Raúl Fernández-Mateo and Alberto T. Pérez
Physics of Fluids 33 (1) (2021)
https://doi.org/10.1063/5.0028118

Dynamical aspects of a bouncing ball in a nonhomogeneous field

Felipe Augusto O. Silveira, Sidiney G. Alves, Edson D. Leonel and Denis G. Ladeira
Physical Review E 103 (6) (2021)
https://doi.org/10.1103/PhysRevE.103.062205

Informatics in Control, Automation and Robotics

Guillaume Avrin, Maria Makarov, Pedro Rodriguez-Ayerbe and Isabelle A. Siegler
Lecture Notes in Electrical Engineering, Informatics in Control, Automation and Robotics 495 719 (2020)
https://doi.org/10.1007/978-3-030-11292-9_36

Experimental and numerical study of nonsmooth maximum bounce height changes in a bouncing ball system

Shu Karube, Takuji Kousaka and Naohiko Inaba
Chaos: An Interdisciplinary Journal of Nonlinear Science 30 (10) (2020)
https://doi.org/10.1063/5.0009343

Dissipative properties for a ball bouncing on a vertically vibrating plate

Z.H. Jiang, Z.J. Liang, D.W. Zhou and Y.J. Deng
Physica A: Statistical Mechanics and its Applications 548 123875 (2020)
https://doi.org/10.1016/j.physa.2019.123875

Stability Analysis Using Monodromy Matrix for Impacting Systems

Hiroyuki ASAHARA and Takuji KOUSAKA
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E101.A (6) 904 (2018)
https://doi.org/10.1587/transfun.E101.A.904

Effect of collision duration on the chaotic dynamics of a ball bouncing on a vertically vibrating plate

Z.H. Jiang, Z.J. Liang, A.C. Wu and R.H. Zheng
Physica A: Statistical Mechanics and its Applications 494 380 (2018)
https://doi.org/10.1016/j.physa.2017.12.062

Energy decay in a tapped granular column: Can a one-dimensional toy model provide insight into fully three-dimensional systems?

C. R. K. Windows-Yule, D. L. Blackmore and A. D. Rosato
Physical Review E 96 (4) (2017)
https://doi.org/10.1103/PhysRevE.96.042902

Influence of Air on the Bouncing Dynamics of Shallow Vibrated Granular Beds: Kroll’s Model Predictions

Bruno V. Guerrero, Vladimir I. Idler and Iván J. Sánchez
Industrial & Engineering Chemistry Research 55 (18) 5287 (2016)
https://doi.org/10.1021/acs.iecr.5b04912

Dynamical properties of a non‐autonomous bouncing ball model forced by non‐harmonic excitation

Marek Lampart and Jaroslav Zapoměl
Mathematical Methods in the Applied Sciences 39 (16) 4923 (2016)
https://doi.org/10.1002/mma.4186

Minimal topological chaos coexisting with a finite set of homoclinic and periodic orbits

Walter Huaraca and Valentín Mendoza
Physica D: Nonlinear Phenomena 315 83 (2016)
https://doi.org/10.1016/j.physd.2015.10.009

Numerical modelling of granular flows: a reality check

C. R. K. Windows-Yule, D. R. Tunuguntla and D. J. Parker
Computational Particle Mechanics 3 (3) 311 (2016)
https://doi.org/10.1007/s40571-015-0083-2

Stability of periodic modes and bifurcation behaviors in a bouncing-dimer system

Jiao Wang, Caishan Liu, Marian Wiercigroch, Chenghua Wang and Yongtao Shui
Nonlinear Dynamics 86 (3) 1477 (2016)
https://doi.org/10.1007/s11071-016-2973-0

Resonance effects on the dynamics of dense granular beds: achieving optimal energy transfer in vibrated granular systems

C R K Windows-Yule, A D Rosato, A R Thornton and D J Parker
New Journal of Physics 17 (2) 023015 (2015)
https://doi.org/10.1088/1367-2630/17/2/023015

Accuracy of the non-relativistic approximation to relativistic probability densities for a low-speed weak-gravity system

Shiuan-Ni Liang and Boon Leong Lan
The European Physical Journal Plus 130 (11) (2015)
https://doi.org/10.1140/epjp/i2015-15233-y

Almost Super Stable Periodic Orbit in an Electric Impact Oscillator

Hiroyuki Asahara, Jun Hosokawa, Kazuyuki Aihara, Soumitro Banerjee and Takuji Kousaka
IEICE Proceeding Series 1 832 (2014)
https://doi.org/10.15248/proc.1.832

Non-stationary dynamics in the bouncing ball: A wavelet perspective

Abhinna K. Behera, A. N. Sekar Iyengar and Prasanta K. Panigrahi
Chaos: An Interdisciplinary Journal of Nonlinear Science 24 (4) (2014)
https://doi.org/10.1063/1.4896774

Subharmonic bifurcations and chaotic dynamics of an air damping completely inelastic bouncing ball

Hong Han, Zehui Jiang, Rui Zhang and Jing Lyu
The European Physical Journal B 86 (12) (2013)
https://doi.org/10.1140/epjb/e2013-40675-0

Comparison of Newtonian and Special-Relativistic Trajectories with the General-Relativistic Trajectory for a Low-Speed Weak-Gravity System

Shiuan-Ni Liang, Boon Leong Lan and Gerardo Adesso
PLoS ONE 7 (4) e34720 (2012)
https://doi.org/10.1371/journal.pone.0034720

The three-dimensional dynamics of the die throw

M. Kapitaniak, J. Strzalko, J. Grabski and T. Kapitaniak
Chaos: An Interdisciplinary Journal of Nonlinear Science 22 (4) 047504 (2012)
https://doi.org/10.1063/1.4746038

Simulation of Inhomogeneous Columns of Beads under Vertical Vibration

Marcus V. Carneiro, Joaquim J. Barroso, Elbert E. N. Macau and Edson Denis Leonel
Mathematical Problems in Engineering 2009 (1) (2009)
https://doi.org/10.1155/2009/345947

Time resolved particle dynamics in granular convection

J.M. Pastor, D. Maza, I. Zuriguel, A. Garcimartín and J.-F. Boudet
Physica D: Nonlinear Phenomena 232 (2) 128 (2007)
https://doi.org/10.1016/j.physd.2007.06.005

First results on vibration feeding of small parts in the presence of adhesive forces

Jan‐Mark Vorstenbosch, Fabien Bourgeois, Sandra Koelemeijer Chollet and Marcel Tichem
Assembly Automation 24 (2) 177 (2004)
https://doi.org/10.1108/01445150410529964

Dynamics of an elastic ball bouncing on an oscillating plane and the oscillon

James M Hill, Michael J Jennings, Dong Vu To and Kiren A Williams
Applied Mathematical Modelling 24 (10) 715 (2000)
https://doi.org/10.1016/S0307-904X(00)00002-0

Motion of a ball dropped onto a one-dimensional self-affine surface

Harold Auradou, Daniel Bideau, Alex Hansen and Knut Jø rgen Må lø y
Journal of Physics A: Mathematical and General 30 (14) 4915 (1997)
https://doi.org/10.1088/0305-4470/30/14/007

Chaotic and Stochastic Behaviour in Automatic Production Lines

Lecture Notes in Physics Monographs, Chaotic and Stochastic Behaviour in Automatic Production Lines 22 81 (1994)
https://doi.org/10.1007/978-3-540-48448-6_7

Period-infinity periodic motions, chaos, and spatial coherence in a 10 degree of freedom impact oscillator

J.P. Cusumano and B.-Y. Bai
Chaos, Solitons & Fractals 3 (5) 515 (1993)
https://doi.org/10.1016/0960-0779(93)90003-J

Dynamics and Stochastic Processes Theory and Applications

Max-Olivier Hongler
Lecture Notes in Physics, Dynamics and Stochastic Processes Theory and Applications 355 142 (1990)
https://doi.org/10.1007/3-540-52347-2_29