La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
N. Boccara , R. Mejdani , L. De Seze
J. Phys. France, 38 2 (1977) 149-151
Citations de cet article :
84 articles
Mean-field model for a mixture of biaxial nematogens and dipolar nanoparticles
William G. C. Oropesa, Eduardo S. Nascimento and André P. Vieira Physical Review E 109 (5) (2024) https://doi.org/10.1103/PhysRevE.109.054701
Investigation of the Maier–Saupe–Zwanzig Model in the Apollonian Network
Cícero T. G. dos Santos, André P. Vieira, Silvio R. Salinas and Roberto F. S. Andrade Brazilian Journal of Physics 53 (4) (2023) https://doi.org/10.1007/s13538-023-01297-7
Real-space renormalization-group treatment of the Maier-Saupe-Zwanzig model for biaxial nematic structures
Cícero T. G. dos Santos, André P. Vieira, Silvio R. Salinas and Roberto F. S. Andrade Physical Review E 103 (3) (2021) https://doi.org/10.1103/PhysRevE.103.032111
Role of molecular bend angle and biaxiality in the stabilization of the twist-bend nematic phase
Wojciech Tomczyk and Lech Longa Soft Matter 16 (18) 4350 (2020) https://doi.org/10.1039/D0SM00078G
Magnetic Field and Dilution Effects on the Phase Diagrams of Simple Statistical Models for Nematic Biaxial Systems
Daniel D. Rodrigues, André P. Vieira and Silvio R. Salinas Crystals 10 (8) 632 (2020) https://doi.org/10.3390/cryst10080632
Monte Carlo study with reweighting of uniaxial nematic liquid crystals composed of biaxial molecules
Nababrata Ghoshal, Soumyajit Pramanick, Sudeshna DasGupta and Soumen Kumar Roy Physical Review E 99 (2) (2019) https://doi.org/10.1103/PhysRevE.99.022703
Phase behavior of hard
C2h
-symmetric particle systems
Christian D'Urso, Giorgio Celebre and Giorgio Cinacchi Physical Review E 100 (1) (2019) https://doi.org/10.1103/PhysRevE.100.012709
Calamitic and discotic liquid crystalline phases for mesogens with triangular cores
Jadwiga Szydłowska, Adam Krówczyński, Ewa Górecka and Damian Pociecha Soft Matter 15 (36) 7195 (2019) https://doi.org/10.1039/C9SM01080G
Elementary lattice models for the nematic transitions in liquid-crystalline systems
S. R. Salinas and E. S. Nascimento Molecular Crystals and Liquid Crystals 657 (1) 27 (2017) https://doi.org/10.1080/15421406.2017.1402640
Phase behavior of the thermotropic melt of asymmetric V-shaped molecules
M. A. Aliev, N. Yu. Kuzminyh and E. A. Ugolkova Physical Review E 95 (4) (2017) https://doi.org/10.1103/PhysRevE.95.042703
Complex free-energy landscapes in biaxial nematic liquid crystals and the role of repulsive interactions: A Wang-Landau study
B. Kamala Latha, K. P. N. Murthy and V. S. S. Sastry Physical Review E 96 (3) (2017) https://doi.org/10.1103/PhysRevE.96.032703
Molecular field theory for biaxial nematics formed from liquid crystal dimers and inhibited by the twist-bend nematic
T. B. T. To, T. J. Sluckin and G. R. Luckhurst Physical Chemistry Chemical Physics 19 (43) 29321 (2017) https://doi.org/10.1039/C7CP04350C
Molecular field theory for polar, biaxial bent-core nematics
T. B. T. To, T. J. Sluckin and G. R. Luckhurst Liquid Crystals 43 (10) 1448 (2016) https://doi.org/10.1080/02678292.2016.1181214
Lattice Statistical Models for the Nematic Transitions in Liquid-Crystalline Systems
E. S. Nascimento, A. P. Vieira and S. R. Salinas Brazilian Journal of Physics 46 (6) 664 (2016) https://doi.org/10.1007/s13538-016-0451-2
The Landau–de Gennes free energy expansion of a melt of V-shaped polymer molecules
M. A. Aliev, E. A. Ugolkova and N. Yu. Kuzminyh The Journal of Chemical Physics 145 (8) (2016) https://doi.org/10.1063/1.4961662
Monte Carlo investigation of critical properties of the Landau point of a biaxial liquid-crystal system
Nababrata Ghoshal, Sabana Shabnam, Sudeshna DasGupta and Soumen Kumar Roy Physical Review E 93 (5) (2016) https://doi.org/10.1103/PhysRevE.93.052701
Influence of the chain length on the nematic-to-isotropic phase transition for the odd members of a highly non-symmetric pyrene-based series of liquid crystal dimers
J. Salud, D.O. López, N. Sebastián, et al. Liquid Crystals 43 (1) 102 (2016) https://doi.org/10.1080/02678292.2015.1066890
Lattice model for biaxial and uniaxial nematic liquid crystals
Ricardo A. Sauerwein and Mário J. de Oliveira The Journal of Chemical Physics 144 (19) (2016) https://doi.org/10.1063/1.4948627
Reexamination of the mean-field phase diagram of biaxial nematic liquid crystals: Insights from Monte Carlo studies
B. Kamala Latha, Regina Jose, K. P. N. Murthy and V. S. S. Sastry Physical Review E 92 (1) (2015) https://doi.org/10.1103/PhysRevE.92.012505
Maier-Saupe model for a mixture of uniaxial and biaxial molecules
E. S. Nascimento, E. F. Henriques, A. P. Vieira and S. R. Salinas Physical Review E 92 (6) (2015) https://doi.org/10.1103/PhysRevE.92.062503
Biaxial Nematic Liquid Crystals
Epifanio G. Virga Biaxial Nematic Liquid Crystals 55 (2015) https://doi.org/10.1002/9781118696316.ch3
Biaxial Nematic Liquid Crystals
Geoffrey R. Luckhurst and Timothy J. Sluckin Biaxial Nematic Liquid Crystals 1 (2015) https://doi.org/10.1002/9781118696316.ch1
Statistical thermodynamics of thermotropic biaxial nematic liquid crystals: An effective, molecular-field based theoretical description by means of a closed approximate form of the orientational partition function
G. Celebre Journal of Molecular Liquids 209 104 (2015) https://doi.org/10.1016/j.molliq.2015.05.009
Handbook of Liquid Crystals
Mikhail Osipov Handbook of Liquid Crystals 1 (2014) https://doi.org/10.1002/9783527671403.hlc006
Handbook of Liquid Crystals
Fuzi Yang and J. Roy Sambles Handbook of Liquid Crystals 1 (2014) https://doi.org/10.1002/9783527671403.hlc052
Handbook of Liquid Crystals
Demetri J. Photinos Handbook of Liquid Crystals 1 (2014) https://doi.org/10.1002/9783527671403.hlc050
Molecular field theory for biaxial smectic A liquid crystals
T. B. T. To, T. J. Sluckin and G. R. Luckhurst The Journal of Chemical Physics 139 (13) (2013) https://doi.org/10.1063/1.4820555
Biaxiality-induced magnetic field effects in bent-core nematics: Molecular-field and Landau theory
T. B. T. To, T. J. Sluckin and G. R. Luckhurst Physical Review E 88 (6) (2013) https://doi.org/10.1103/PhysRevE.88.062506
Symmetry Adapted Molecular-Field Theory for Thermotropic Biaxial Nematic Liquid Crystals and Its Expansion at Low Temperature
S. S. Turzi and T. J. Sluckin SIAM Journal on Applied Mathematics 73 (3) 1139 (2013) https://doi.org/10.1137/120897237
Depletion-induced biaxial nematic states of boardlike particles
S Belli, M Dijkstra and R van Roij Journal of Physics: Condensed Matter 24 (28) 284128 (2012) https://doi.org/10.1088/0953-8984/24/28/284128
Molecular-field-theory approach to the Landau theory of liquid crystals: Uniaxial and biaxial nematics
Geoffrey R. Luckhurst, Shohei Naemura, Timothy J. Sluckin, Kenneth S. Thomas and Stefano S. Turzi Physical Review E 85 (3) (2012) https://doi.org/10.1103/PhysRevE.85.031705
Enantiotropic Nematics From Cross‐Like 1,2,4,5‐Tetrakis(4′‐alkyl‐4‐ethynylbiphenyl)benzenes and Their Biaxiality Studies
Hsiu‐Hui Chen, Hsing‐An Lin, Yin‐Hui Lai, et al. Chemistry – A European Journal 18 (31) 9543 (2012) https://doi.org/10.1002/chem.201103453
Effect of Molecular Flexibility on the Nematic-to-Isotropic Phase Transition for Highly Biaxial Molecular Non-Symmetric Liquid Crystal Dimers
Nerea Sebastián, David Orencio López, Sergio Diez-Berart, María Rosario De la Fuente, Josep Salud, Miguel Angel Pérez-Jubindo and María Blanca Ros Materials 4 (10) 1632 (2011) https://doi.org/10.3390/ma4101632
Dielectric and Thermodynamic Study on the Liquid Crystal Dimer α-(4-Cyanobiphenyl-4′-oxy)-ω-(1-pyreniminebenzylidene-4′-oxy)undecane (CBO11O·Py)
N. Sebastián, M. R. de la Fuente, D. O. López, et al. The Journal of Physical Chemistry B 115 (32) 9766 (2011) https://doi.org/10.1021/jp202796y
Ferroelectricity in low-symmetry biaxial nematic liquid crystals
Mikhail A Osipov and Maxim V Gorkunov Journal of Physics: Condensed Matter 22 (36) 362101 (2010) https://doi.org/10.1088/0953-8984/22/36/362101
Molecular model of biaxial ordering in nematic liquid crystals composed of flat molecules with four mesogenic groups
M. V. Gorkunov, M. A. Osipov, A. Kocot and J. K. Vij Physical Review E 81 (6) (2010) https://doi.org/10.1103/PhysRevE.81.061702
Biaxial nematic phases
Carsten Tschierske and Demetri J. Photinos Journal of Materials Chemistry 20 (21) 4263 (2010) https://doi.org/10.1039/b924810b
Minimum Principle for Indefinite Mean-Field Free Energies
Eugene C. Gartland and Epifanio G. Virga Archive for Rational Mechanics and Analysis 196 (1) 143 (2010) https://doi.org/10.1007/s00205-009-0238-5
Continuum Landau Model for Biaxial Nematic Liquid Crystals
Giovanni De Matteis Molecular Crystals and Liquid Crystals 500 (1) 31 (2009) https://doi.org/10.1080/15421400802713678
Biaxial nematics composed of flexible molecules: a molecular field theory
Geoffrey R. Luckhurst Liquid Crystals 36 (10-11) 1295 (2009) https://doi.org/10.1080/02678290903138729
Universal Mean-Field Phase Diagram for Biaxial Nematics
Fulvio Bisi Molecular Crystals and Liquid Crystals 480 (1) 182 (2008) https://doi.org/10.1080/15421400701826316
Universal Features in the Nematic Uniaxial-to-Biaxial Transition
Fulvio Bisi Molecular Crystals and Liquid Crystals 495 (1) 112/[464] (2008) https://doi.org/10.1080/15421400802430547
Landau theory for biaxial nematic liquid crystals with two order parameter tensors
Giovanni De Matteis, André M. Sonnet and Epifanio G. Virga Continuum Mechanics and Thermodynamics 20 (6) 347 (2008) https://doi.org/10.1007/s00161-008-0086-9
Biaxial and uniaxial phases produced by partly repulsive mesogenic models involvingD2hmolecular symmetries
Giovanni De Matteis and Silvano Romano Physical Review E 78 (2) (2008) https://doi.org/10.1103/PhysRevE.78.021702
Uniaxial rebound at the nematic biaxial transition
Fulvio Bisi, Silvano Romano and Epifanio G. Virga Physical Review E 75 (4) (2007) https://doi.org/10.1103/PhysRevE.75.041705
Poisson-bracket approach to the dynamics of bent-core molecules
William Kung and M. Cristina Marchetti Physical Review E 76 (1) (2007) https://doi.org/10.1103/PhysRevE.76.011710
Orientational order parameters in biaxial nematics: Polymorphic notation
Riccardo Rosso Liquid Crystals 34 (6) 737 (2007) https://doi.org/10.1080/02678290701284303
Constrained stability for biaxial nematic phases
Giovanni De Matteis, Fulvio Bisi and Epifanio G. Virga Continuum Mechanics and Thermodynamics 19 (1-2) 1 (2007) https://doi.org/10.1007/s00161-007-0041-1
Liquid crystal dimers and higher oligomers: between monomers and polymers
Corrie T. Imrie and Peter A. Henderson Chemical Society Reviews 36 (12) 2096 (2007) https://doi.org/10.1039/b714102e
Bent‐core mesogens based on semi‐flexible dicyclohexylmethane spacers
Andreja Lesac, H. Loc Nguyen, Sanja Narančić, et al. Liquid Crystals 33 (2) 167 (2006) https://doi.org/10.1080/02678290500168111
Quadrupolar projection of excluded-volume interactions in biaxial nematic liquid crystals
Riccardo Rosso and Epifanio G. Virga Physical Review E 74 (2) (2006) https://doi.org/10.1103/PhysRevE.74.021712
Universal mean-field phase diagram for biaxial nematics obtained from a minimax principle
Fulvio Bisi, Epifanio G. Virga, Eugene C. Gartland, et al. Physical Review E 73 (5) (2006) https://doi.org/10.1103/PhysRevE.73.051709
Orthometallated palladium(ii) imine complexes as candidate materials for the biaxial nematic phase. Crystal and molecular structure of three palladium imine complexes
Viorel Cîrcu, Timothy J. K. Gibbs, Laurent Omnès, et al. J. Mater. Chem. 16 (44) 4316 (2006) https://doi.org/10.1039/B608823F
Dimeric Salicylaldimine-Based Mesogens with Flexible Spacers: Parity-Dependent Mesomorphism
Maja Šepelj, Andreja Lesac, Ute Baumeister, et al. Chemistry of Materials 18 (8) 2050 (2006) https://doi.org/10.1021/cm0526213
Simple model for biaxial smectic-Aliquid-crystal phases
P. I. C. Teixeira, M. A. Osipov and G. R. Luckhurst Physical Review E 73 (6) (2006) https://doi.org/10.1103/PhysRevE.73.061708
High Field ESR Study of Three Dimensional Spin Frustrated System MgCr2O4
Makoto Yoshida, Tomoya Hirano, Yuji Inagaki, et al. Journal of the Physical Society of Japan 75 (4) 044709 (2006) https://doi.org/10.1143/JPSJ.75.044709
Orthometallated palladium(ii) imine complexes as candidate materials for the biaxial nematic phase. Crystal and molecular structure of three palladium imine complexes
Viorel Cîrcu, Timothy J. K. Gibbs, Laurent Omnès, Peter N. Horton, Michael B. Hursthouse and Duncan W. Bruce J. Mater. Chem. 16 (44) 4316 (2006) https://doi.org/10.1039/b608823f
Bifurcation analysis and computer simulation of biaxial liquid crystals
Giovanni De Matteis, Silvano Romano and Epifanio G. Virga Physical Review E 72 (4) (2005) https://doi.org/10.1103/PhysRevE.72.041706
Possible transition from rod‐like to disc‐like behaviour in ortho‐metallated imine complexes of palladium(II): crystal and molecular structure of three palladium complexes
Laurent Omnès, Viorel Cîrcu, Peter T. Hutchins, et al. Liquid Crystals 32 (11-12) 1437 (2005) https://doi.org/10.1080/02678290500160753
V‐förmige Moleküle: neue Kandidaten für die zweiachsig nematische Phase
Geoffrey R. Luckhurst Angewandte Chemie 117 (19) 2894 (2005) https://doi.org/10.1002/ange.200500709
Biaxial nematic phases and V-shaped molecules: A Monte Carlo simulation study
Martin A. Bates and Geoffrey R. Luckhurst Physical Review E 72 (5) (2005) https://doi.org/10.1103/PhysRevE.72.051702
V‐Shaped Molecules: New Contenders for the Biaxial Nematic Phase
Geoffrey R. Luckhurst Angewandte Chemie International Edition 44 (19) 2834 (2005) https://doi.org/10.1002/anie.200500709
Minimal coupling model of the biaxial nematic phase
Lech Longa, Piotr Grzybowski, Silvano Romano and Epifanio Virga Physical Review E 71 (5) (2005) https://doi.org/10.1103/PhysRevE.71.051714
Luckhurst–Romano model of thermotropic biaxial nematic phase
Lech Longa and Grzegorz Pająk Liquid Crystals 32 (11-12) 1409 (2005) https://doi.org/10.1080/02678290500167873
Computer simulation study of a biaxial nematogenic lattice model associated with a three-dimensional lattice and involving dispersion interactions
Silvano Romano Physica A: Statistical Mechanics and its Applications 339 (3-4) 511 (2004) https://doi.org/10.1016/j.physa.2004.04.049
Computer simulation of a biaxial nematogenic model on a three-dimensional lattice and based on a recently proposed interaction potential
Silvano Romano Physica A: Statistical Mechanics and its Applications 337 (3-4) 505 (2004) https://doi.org/10.1016/j.physa.2004.02.001
Mean-field and computer simulation study of a biaxial nematogenic lattice model mimicking shape amphiphilicity
Silvano Romano Physics Letters A 333 (1-2) 110 (2004) https://doi.org/10.1016/j.physleta.2004.09.055
Computer simulation study of a biaxial nematogenic lattice model associated with a two-dimensional lattice
Silvano Romano Physica A: Statistical Mechanics and its Applications 339 (3-4) 491 (2004) https://doi.org/10.1016/j.physa.2004.04.050
Towards the biaxial nematic phase through molecular design
Duncan W. Bruce The Chemical Record 4 (1) 10 (2004) https://doi.org/10.1002/tcr.10073
Dielectric shape dispersion and biaxial transitions in nematic liquid crystals
André M. Sonnet, Epifanio G. Virga and Georges E. Durand Physical Review E 67 (6) (2003) https://doi.org/10.1103/PhysRevE.67.061701
Triptycene-containing bis(phenylethynyl)benzene nematic liquid crystals
Timothy M. Long and Timothy M. Swager J. Mater. Chem. 12 (12) 3407 (2002) https://doi.org/10.1039/B203160D
Dielectric Anomaly of ZnCr2O4at Antiferromagnetic Transition
Isao Kagomiya, Kay Kohn, Makoto Toki, Yoshiaki Hata and Eiji Kita Journal of the Physical Society of Japan 71 (3) 916 (2002) https://doi.org/10.1143/JPSJ.71.916
Toward the Biaxial Nematic Phase of Low Molar Mass Thermotropic Mesogens: Substantial Molecular Biaxiality in Covalently Linked Rod−Disk Dimers
Jonathan J. Hunt, Richard W. Date, Bakir A. Timimi, Geoffrey R. Luckhurst and Duncan W. Bruce Journal of the American Chemical Society 123 (41) 10115 (2001) https://doi.org/10.1021/ja015943q
Biaxial nematic liquid crystals: fact or fiction?
G.R. Luckhurst Thin Solid Films 393 (1-2) 40 (2001) https://doi.org/10.1016/S0040-6090(01)01091-4
Biaxial Nematic Order in the Hard-boomerang Fluid
P. I. C. Teixeira, A. J. Masters and B. M. Mulder Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 323 (1) 167 (1998) https://doi.org/10.1080/10587259808048440
Fast relaxation mode in a thermotropic uniaxial nematic liquid crystal
Sanjay Tripathi, Hua Zhong, Rolfe G. Petschek and Charles Rosenblatt Physical Review E 52 (5) 5004 (1995) https://doi.org/10.1103/PhysRevE.52.5004
Order Parameters of Two Phase Transitions in Mixtures of Ellipsoidal and Spherical Molecules
R. Mejdani and A. Gashi physica status solidi (b) 186 (2) 403 (1994) https://doi.org/10.1002/pssb.2221860208
Computer simulation studies of anisotropic systems. XXII. An equimolar mixture of rods and discs: A biaxial nematic?
R. Hashim, G. R. Luckhurst, F. Prata and S. Romano Liquid Crystals 15 (3) 283 (1993) https://doi.org/10.1080/02678299308029133
Biaxial order in spin nematics
R. Haramoto and J. Sak Physical Review B 46 (13) 8610 (1992) https://doi.org/10.1103/PhysRevB.46.8610
Magnetic birefringence near the lyotropic isotropic-nematic Landau point
Chester A. Vause Physical Review A 30 (5) 2645 (1984) https://doi.org/10.1103/PhysRevA.30.2645
One-dimensional model with rotational and liquid-crystalline phase transitions
A. Fulińiski and L. Longa Journal of Statistical Physics 21 (6) 635 (1979) https://doi.org/10.1007/BF01107906
Cluster expansions in cooperative Jahn-Teller T-systems
H. Nusser and M. Wagner Physica A: Statistical Mechanics and its Applications 98 (1-2) 118 (1979) https://doi.org/10.1016/0378-4371(79)90169-9
High temperature series expansions in cooperative Jahn-Teller T-systems
W. Junker and M. Wagner Physica A: Statistical Mechanics and its Applications 94 (3-4) 385 (1978) https://doi.org/10.1016/0378-4371(78)90074-2
Theory of the Landau critical point.I. Mean-field theory, scaling theory, and critical exponents to orderε2
C. Vause and J. Sak Physical Review B 18 (3) 1455 (1978) https://doi.org/10.1103/PhysRevB.18.1455