La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Werner Krauth , Marc Mézard
J. Phys. France, 50 20 (1989) 3057-3066
Citations de cet article :
231 articles | Pages :
Statistical mechanics of lossy compression using multilayer perceptrons
Kazushi Mimura and Masato Okada Physical Review E 74 (2) (2006) https://doi.org/10.1103/PhysRevE.74.026108
Eluding oblivion with smart stochastic selection of synaptic updates
Stefano Fusi and Walter Senn Chaos: An Interdisciplinary Journal of Nonlinear Science 16 (2) (2006) https://doi.org/10.1063/1.2213587
Convergence of stochastic learning in perceptrons with binary synapses
Walter Senn and Stefano Fusi Physical Review E 71 (6) (2005) https://doi.org/10.1103/PhysRevE.71.061907
Anti-pairing in learning of a neural network with redundant hidden units
Chulan Kwon and Hyong Kyun Kim Journal of Physics A: Mathematical and General 38 (25) 5627 (2005) https://doi.org/10.1088/0305-4470/38/25/003
Frozen Glass Phase in the Multi-index Matching Problem
O. C. Martin, M. Mézard and O. Rivoire Physical Review Letters 93 (21) (2004) https://doi.org/10.1103/PhysRevLett.93.217205
Symmetry Breaking in Population-Based Optimization
A. Prugel-Bennett IEEE Transactions on Evolutionary Computation 8 (1) 63 (2004) https://doi.org/10.1109/TEVC.2003.819419
Optimal static and dynamic recycling of defective binary devices
Damien Challet and Isaac Pérez Castillo Journal of Statistical Mechanics: Theory and Experiment 2004 (11) P11003 (2004) https://doi.org/10.1088/1742-5468/2004/11/P11003
Learning of Non-Monotonic Target Functions by Ising Perceptrons –Learning Curve, Perfect Learning and Perfect Anti-Learning–
Kanako Tooriyama and Tatsuya Uezu Journal of the Physical Society of Japan 72 (7) 1635 (2003) https://doi.org/10.1143/JPSJ.72.1635
Statistical mechanics of lossy data compression using a nonmonotonic perceptron
Tadaaki Hosaka, Yoshiyuki Kabashima and Hidetoshi Nishimori Physical Review E 66 (6) (2002) https://doi.org/10.1103/PhysRevE.66.066126
On the Conditions for the Existence of Perfect Learning and Power Law Behaviour in Learning from Stochastic Examples by Ising Perceptrons
Tatsuya Uezu Journal of the Physical Society of Japan 71 (8) 1882 (2002) https://doi.org/10.1143/JPSJ.71.1882
Generalization and capacity of extensively large two-layered perceptrons
Michal Rosen-Zvi, Andreas Engel and Ido Kanter Physical Review E 66 (3) (2002) https://doi.org/10.1103/PhysRevE.66.036138
Multilayer Neural Networks with Extensively Many Hidden Units
Michal Rosen-Zvi, Andreas Engel and Ido Kanter Physical Review Letters 87 (7) (2001) https://doi.org/10.1103/PhysRevLett.87.078101
Learning strategies for the maximally stable diluted binary perceptron
D. Malzahn Physical Review E 61 (6) 6261 (2000) https://doi.org/10.1103/PhysRevE.61.6261
N. Hendrich 573 (2000) https://doi.org/10.1109/IJCNN.2000.861530
Variational studies and replica symmetry breaking in the generalization problem of the binary perceptron
Evaldo Botelho, Cristiano R. Mattos and Nestor Caticha Physical Review E 62 (5) 6999 (2000) https://doi.org/10.1103/PhysRevE.62.6999
From shrinking to percolation in an optimization model
J van Mourik, K Y Michael Wong and D Bollé Journal of Physics A: Mathematical and General 33 (7) L53 (2000) https://doi.org/10.1088/0305-4470/33/7/101
Intersecting random half cubes
Michel Talagrand Random Structures and Algorithms 15 (3-4) 436 (1999) https://doi.org/10.1002/(SICI)1098-2418(199910/12)15:3/4<436::AID-RSA11>3.0.CO;2-5
Information theoretical approach to the storage capacity of neural networks with binary weights
Hiroki Suyari and Ikuo Matsuba Physical Review E 60 (4) 4576 (1999) https://doi.org/10.1103/PhysRevE.60.4576
H. Suyari and I. Matsuba 1 427 (1999) https://doi.org/10.1109/IJCNN.1999.831533
Learning in the hypercube: A stepping stone to the binary perceptron
M. Bouten, L. Reimers and B. Van Rompaey Physical Review E 58 (2) 2378 (1998) https://doi.org/10.1103/PhysRevE.58.2378
Spin glass states of the anti-Hopfield model
Kazuo Nokura Journal of Physics A: Mathematical and General 31 (37) 7447 (1998) https://doi.org/10.1088/0305-4470/31/37/007
Covering Cubes by Random Half Cubes, with Applications to Binary Neural Networks
Jeong Han Kim and James R. Roche Journal of Computer and System Sciences 56 (2) 223 (1998) https://doi.org/10.1006/jcss.1997.1560
Vapnik-Chervonenkis dimension of neural networks with binary weights
Stephan Mertens and Andreas Engel Physical Review E 55 (4) 4478 (1997) https://doi.org/10.1103/PhysRevE.55.4478
Cost function and pattern distribution of the Bayesian perceptron
Arnaud Buhot and Mirta B Gordon Physics Letters A 228 (1-2) 73 (1997) https://doi.org/10.1016/S0375-9601(97)00111-4
Statistical mechanics of the randomK-satisfiability model
Rémi Monasson and Riccardo Zecchina Physical Review E 56 (2) 1357 (1997) https://doi.org/10.1103/PhysRevE.56.1357
Learning by dilution in a neural network
B López and W Kinzel Journal of Physics A: Mathematical and General 30 (22) 7753 (1997) https://doi.org/10.1088/0305-4470/30/22/014
Finite Size Scaling in Neural Networks
Walter Nadler and Wolfgang Fink Physical Review Letters 78 (3) 555 (1997) https://doi.org/10.1103/PhysRevLett.78.555
Multifractality and percolation in the coupling space of perceptrons
M. Weigt and A. Engel Physical Review E 55 (4) 4552 (1997) https://doi.org/10.1103/PhysRevE.55.4552
Learning by a population of perceptrons
Kukjin Kang, Jong-Hoon Oh and Chulan Kwon Physical Review E 55 (3) 3257 (1997) https://doi.org/10.1103/PhysRevE.55.3257
Weak instability of frustrated fermionic models
Alba Theumann Physical Review B 56 (9) 5500 (1997) https://doi.org/10.1103/PhysRevB.56.5500
Domain sizes of the Gardner volume for the Ising reversed wedge perceptron
G. J. Bex and C. Van den Broeck Physical Review E 56 (1) 870 (1997) https://doi.org/10.1103/PhysRevE.56.870
Finite size scaling of the Bayesian perceptron
Arnaud Buhot, Juan-Manuel Torres Moreno and Mirta B. Gordon Physical Review E 55 (6) 7434 (1997) https://doi.org/10.1103/PhysRevE.55.7434
The effects of limited-precision weights on the threshold Adaline
M. Stevenson IEEE Transactions on Neural Networks 8 (3) 549 (1997) https://doi.org/10.1109/72.572094
Vapnik-Chervonenkis entropy of the spherical perceptron
P. Riegler and H. S. Seung Physical Review E 55 (3) 3283 (1997) https://doi.org/10.1103/PhysRevE.55.3283
Storage capacities of committee machines with overlapping and non-overlapping receptive fields
C Kwon and J-H Oh Journal of Physics A: Mathematical and General 30 (18) 6273 (1997) https://doi.org/10.1088/0305-4470/30/18/011
An exact learning algorithm for autoassociative neural networks with binary couplings
G Milde and S Kobe Journal of Physics A: Mathematical and General 30 (7) 2349 (1997) https://doi.org/10.1088/0305-4470/30/7/016
Threshold-induced phase transitions in perceptrons
Ansgar H L West and David Saad Journal of Physics A: Mathematical and General 30 (10) 3471 (1997) https://doi.org/10.1088/0305-4470/30/10/023
Statistical mechanics of the multi-constraint continuous knapsack problem
Jun-ichi Inoue Journal of Physics A: Mathematical and General 30 (4) 1047 (1997) https://doi.org/10.1088/0305-4470/30/4/008
Perturbative treatments and learning techniques
L. Diambra and A. Plastino Physical Review E 53 (4) 3970 (1996) https://doi.org/10.1103/PhysRevE.53.3970
Analytical and numerical study of internal representations in multilayer neural networks with binary weights
Simona Cocco, Rémi Monasson and Riccardo Zecchina Physical Review E 54 (1) 717 (1996) https://doi.org/10.1103/PhysRevE.54.717
Multifractal analysis of the coupling space of feedforward neural networks
A. Engel and M. Weigt Physical Review E 53 (3) R2064 (1996) https://doi.org/10.1103/PhysRevE.53.R2064
Perfect learning and power law in learning from stochastic examples by Ising perceptrons: analysis under one-step replica symmetry breaking ansatz
Tatsuya Uezu and Yoshiyuki Kabashima Journal of Physics A: Mathematical and General 29 (17) L439 (1996) https://doi.org/10.1088/0305-4470/29/17/004
Learning strategy for the binary perceptron
L Reimers, M Bouten and B Van Rompaey Journal of Physics A: Mathematical and General 29 (19) 6247 (1996) https://doi.org/10.1088/0305-4470/29/19/010
N. Hendrich 213 (1996) https://doi.org/10.1109/MNNFS.1996.493793
A Large Committee Machine Learning Noisy Rules
R. Urbanczik Neural Computation 8 (6) 1267 (1996) https://doi.org/10.1162/neco.1996.8.6.1267
Dynamics of Complex Interacting Systems
Dimitri Petritis Nonlinear Phenomena and Complex Systems, Dynamics of Complex Interacting Systems 2 81 (1996) https://doi.org/10.1007/978-94-017-1323-8_3
The Phase Space of Interactions and the Hebb Rule in the Neural Network Models
T. Uezu and K. Nokura Progress of Theoretical Physics 95 (2) 273 (1996) https://doi.org/10.1143/PTP.95.273
Aging without disorder on long time scales
Werner Krauth and Marc M�zard Zeitschrift f�r Physik B Condensed Matter 97 (1) 127 (1995) https://doi.org/10.1007/BF01317596
Replica symmetry breaking in a diluted network with binary couplings
J. Iwanski, J. Schietse and M. Bouten Physical Review E 52 (1) 888 (1995) https://doi.org/10.1103/PhysRevE.52.888
Storage capacity and generalization error for the reversed-wedge Ising perceptron
G. J. Bex, R. Serneels and C. Van den Broeck Physical Review E 51 (6) 6309 (1995) https://doi.org/10.1103/PhysRevE.51.6309
To Maximize or Not to Maximize the Free Energy of Glassy Systems
Th. M. Nieuwenhuizen Physical Review Letters 74 (17) 3463 (1995) https://doi.org/10.1103/PhysRevLett.74.3463
Maximal stability in unsupervised learning
A Mietzner, M Opper and W Kinzel Journal of Physics A: Mathematical and General 28 (10) 2785 (1995) https://doi.org/10.1088/0305-4470/28/10/011
Statistical physics estimates for the complexity of feedforward neural networks
Manfred Opper Physical Review E 51 (4) 3613 (1995) https://doi.org/10.1103/PhysRevE.51.3613
The Target Switch Algorithm: A Constructive Learning Procedure for Feed-Forward Neural Networks
Colin Campbell and C. Perez Vicente Neural Computation 7 (6) 1245 (1995) https://doi.org/10.1162/neco.1995.7.6.1245
A fully connected committee machine learning unrealizable rules
R Urbanczik Journal of Physics A: Mathematical and General 28 (24) 7097 (1995) https://doi.org/10.1088/0305-4470/28/24/010
Capacity of the multilayer perceptron with discrete synaptic couplings
Kazuo Nokura Physical Review E 49 (6) 5812 (1994) https://doi.org/10.1103/PhysRevE.49.5812
Capacity of diluted multi-state neural networks
D Bolle and J van Mourik Journal of Physics A: Mathematical and General 27 (4) 1151 (1994) https://doi.org/10.1088/0305-4470/27/4/011
Storage Capacity of the Tree-Structured Committee Machine with Discrete Weights
R Urbanczik Europhysics Letters (EPL) 26 (3) 233 (1994) https://doi.org/10.1209/0295-5075/26/3/013
Learning in Neural Networks with Material Synapses
Daniel J. Amit and Stefano Fusi Neural Computation 6 (5) 957 (1994) https://doi.org/10.1162/neco.1994.6.5.957
Maximizing the robustness of a linear threshold classifier with discrete weights
Eddy Mayoraz and Vincent Robert Network: Computation in Neural Systems 5 (2) 299 (1994) https://doi.org/10.1088/0954-898X/5/2/011
A perceptron with a skeletal weight-space
R W Penny and D Sherrington Journal of Physics A: Mathematical and General 27 (1) 23 (1994) https://doi.org/10.1088/0305-4470/27/1/003
Huq and Stevenson 714 (1994) https://doi.org/10.1109/CCECE.1994.405851
Storage capacity of a neural network with state-dependent synapses
F Zertuche, R Lopez and H Waelbroeck Journal of Physics A: Mathematical and General 27 (5) 1575 (1994) https://doi.org/10.1088/0305-4470/27/5/021
A review of combinatorial problems arising in feedforward neural network design
E. Amaldi, E. Mayoraz and D. de Werra Discrete Applied Mathematics 52 (2) 111 (1994) https://doi.org/10.1016/0166-218X(92)00184-N
Statistical mechanics of the knapsack problem
E Korutcheva, M Opper and B Lopez Journal of Physics A: Mathematical and General 27 (18) L645 (1994) https://doi.org/10.1088/0305-4470/27/18/001
Slow interaction dynamics in spin-glass models
R Penney and D Sherrington Journal of Physics A: Mathematical and General 27 (12) 4027 (1994) https://doi.org/10.1088/0305-4470/27/12/011
Duality Between Learning Machines: A Bridge Between Supervised and Unsupervised Learning
J.-P. Nadal and N. Parga Neural Computation 6 (3) 491 (1994) https://doi.org/10.1162/neco.1994.6.3.491
Storage capacity of neural networks: effect of the fluctuations of the number of active neurons per memory
N Brunel Journal of Physics A: Mathematical and General 27 (14) 4783 (1994) https://doi.org/10.1088/0305-4470/27/14/009
Maximizing the robustness of a linear threshold classifier with discrete weights
Eddy Mayoraz and Vincent Robert Network: Computation in Neural Systems 5 (2) 299 (1994) https://doi.org/10.1088/0954-898X_5_2_011
From Statistical Physics to Statistical Inference and Back
Naftali Tishby From Statistical Physics to Statistical Inference and Back 205 (1994) https://doi.org/10.1007/978-94-011-1068-6_13
Coupled dynamics of fast spins and slow interactions in neural networks and spin systems
R W Penney, A C C Coolen and D Sherrington Journal of Physics A: Mathematical and General 26 (15) 3681 (1993) https://doi.org/10.1088/0305-4470/26/15/018
Sign-constrained synapses and biased patterns in neural networks
R Raju Viswanathan Journal of Physics A: Mathematical and General 26 (22) 6195 (1993) https://doi.org/10.1088/0305-4470/26/22/020
Generalization in a two-layer neural network
Kukjin Kang, Jong-Hoon Oh, Chulan Kwon and Youngah Park Physical Review E 48 (6) 4805 (1993) https://doi.org/10.1103/PhysRevE.48.4805
On optimal neural network learning
T.L.H. Watkin Physica A: Statistical Mechanics and its Applications 200 (1-4) 628 (1993) https://doi.org/10.1016/0378-4371(93)90569-P
Neural networks with biased bipolar synapses and biased patterns
R R Viswanathan Journal of Physics A: Mathematical and General 26 (4) 873 (1993) https://doi.org/10.1088/0305-4470/26/4/014
The weight-space of the binary perceptron
R W Penney and D Sherrington Journal of Physics A: Mathematical and General 26 (22) 6173 (1993) https://doi.org/10.1088/0305-4470/26/22/018
Sanghun Ha, Kukjin Kang, Jong-Hoon Oh, Chulan Kwon and Youngah Park 2 1723 (1993) https://doi.org/10.1109/IJCNN.1993.716986
Learning from correlated examples in a perceptron
W Tarkowski and M Lewenstein Journal of Physics A: Mathematical and General 26 (15) 3669 (1993) https://doi.org/10.1088/0305-4470/26/15/017
Statistical mechanics calculation of Vapnik-Chervonenkis bounds for perceptrons
A Engel and W Fink Journal of Physics A: Mathematical and General 26 (23) 6893 (1993) https://doi.org/10.1088/0305-4470/26/23/031
North-Holland Mathematical Library
David Sherrington North-Holland Mathematical Library 51 261 (1993) https://doi.org/10.1016/S0924-6509(08)70040-0
Noise-optimal binary-synapse neural networks
R W Penney and D Sherrington Journal of Physics A: Mathematical and General 26 (16) 3995 (1993) https://doi.org/10.1088/0305-4470/26/16/016
Neural networks optimally trained with noisy data
K. Y. Michael Wong and David Sherrington Physical Review E 47 (6) 4465 (1993) https://doi.org/10.1103/PhysRevE.47.4465
The statistical mechanics of the Ising perceptron
J F Fontanari and R Meir Journal of Physics A: Mathematical and General 26 (5) 1077 (1993) https://doi.org/10.1088/0305-4470/26/5/027
On the precision constraints of threshold elements
R Meir and J Fontanari Network: Computation in Neural Systems 4 (3) 381 (1993) https://doi.org/10.1088/0954-898X/4/3/008
Learning curves of the clipped Hebb rule for networks with binary weights
M Golea and M Marchand Journal of Physics A: Mathematical and General 26 (21) 5751 (1993) https://doi.org/10.1088/0305-4470/26/21/015
Optimal storage of a neural network model: a replica symmetry-breaking solution
R Erichsen and W K Thuemann Journal of Physics A: Mathematical and General 26 (2) L61 (1993) https://doi.org/10.1088/0305-4470/26/2/007
On the Q-state neuron problem in attractor neural networks
G.A. Kohring Neural Networks 6 (4) 573 (1993) https://doi.org/10.1016/S0893-6080(05)80060-7
On Learning Perceptrons with Binary Weights
Mostefa Golea and Mario Marchand Neural Computation 5 (5) 767 (1993) https://doi.org/10.1162/neco.1993.5.5.767
Optimal Learning with a Neural Network
T. L. H Watkin Europhysics Letters (EPL) 21 (8) 871 (1993) https://doi.org/10.1209/0295-5075/21/8/013
Storage of sets of correlated data in neural network memories
W Tarkowski and M Lewenstein Journal of Physics A: Mathematical and General 26 (11) 2453 (1993) https://doi.org/10.1088/0305-4470/26/11/001
Dynamics of learning and generalization in perceptrons with constraints
Heinz Horner Physica A: Statistical Mechanics and its Applications 200 (1-4) 552 (1993) https://doi.org/10.1016/0378-4371(93)90560-Q
Pattern selectivity and binary-synapse neural networks
R W Penney and D Sherrington Journal of Physics A: Mathematical and General 26 (17) 4479 (1993) https://doi.org/10.1088/0305-4470/26/17/052
The effects of lesions on the generalization ability of a perceptron
D M L Barbato and J F Fontanari Journal of Physics A: Mathematical and General 26 (8) 1847 (1993) https://doi.org/10.1088/0305-4470/26/8/013
The statistical mechanics of learning a rule
Timothy L. H. Watkin, Albrecht Rau and Michael Biehl Reviews of Modern Physics 65 (2) 499 (1993) https://doi.org/10.1103/RevModPhys.65.499
On the precision constraints of threshold elements
R Meir and J F Fontanari Network: Computation in Neural Systems 4 (3) 381 (1993) https://doi.org/10.1088/0954-898X_4_3_008
Stability of the replica-symmetric solution for a perceptron learning from examples
C. Kwon, Youngah Park and J.-H. Oh Physical Review E 47 (5) 3707 (1993) https://doi.org/10.1103/PhysRevE.47.3707
Storage capacity and learning algorithms for two-layer neural networks
A. Engel, H. M. Köhler, F. Tschepke, H. Vollmayr and A. Zippelius Physical Review A 45 (10) 7590 (1992) https://doi.org/10.1103/PhysRevA.45.7590
Properties of neural networks storing spatially correlated patterns
R Monasson Journal of Physics A: Mathematical and General 25 (13) 3701 (1992) https://doi.org/10.1088/0305-4470/25/13/019
Information capacity of a perceptron
N Brunel, J -P Nadal and G Toulouse Journal of Physics A: Mathematical and General 25 (19) 5017 (1992) https://doi.org/10.1088/0305-4470/25/19/015
Information Theory of a Multilayer Neural Network with Discrete Weights
I Kanter Europhysics Letters (EPL) 17 (2) 181 (1992) https://doi.org/10.1209/0295-5075/17/2/017
Pages :
101 à 200 sur 231 articles