La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
C. Bouchiat , G.W. Gibbons
J. Phys. France, 49 2 (1988) 187-199
Citations de cet article :
46 articles
Colloquium
: Geometric phases of light: Insights from fiber bundle theory
C. Cisowski, J. B. Götte and S. Franke-Arnold Reviews of Modern Physics 94 (3) (2022) https://doi.org/10.1103/RevModPhys.94.031001
Berry phases of higher spins due to internal geometry of Majorana constellation and relation to quantum entanglement
Chon-Fai Kam and Ren-Bao Liu New Journal of Physics 23 (7) 073020 (2021) https://doi.org/10.1088/1367-2630/ac0ed5
A Note on the Differential Geometry Concepts in Quantum Evolutional Systems (I): Geometric-Phase Connection, Gauge Potentials, Metric and Curvature Tensor
建其 沈 Modern Physics 09 (06) 289 (2019) https://doi.org/10.12677/MP.2019.96029
Geometric phases in 2D and 3D polarized fields: geometrical, dynamical, and topological aspects
Konstantin Y Bliokh, Miguel A Alonso and Mark R Dennis Reports on Progress in Physics 82 (12) 122401 (2019) https://doi.org/10.1088/1361-6633/ab4415
Spin-1 topological monopoles in the parameter space of ultracold atoms
Haiping Hu and Chuanwei Zhang Physical Review A 98 (1) (2018) https://doi.org/10.1103/PhysRevA.98.013627
twistor theory
Andrews Dancer and Ian Strachan twistor theory 9 (2017) https://doi.org/10.1201/9780203734889-3
Topology and Holonomy in Discrete-time Quantum Walks
Graciana Puentes Crystals 7 (5) 122 (2017) https://doi.org/10.3390/cryst7050122
Soft gravitons and the memory effect for plane gravitational waves
P.-M. Zhang, C. Duval, G. W. Gibbons and P. A. Horvathy Physical Review D 96 (6) (2017) https://doi.org/10.1103/PhysRevD.96.064013
Compactifications of deformed conifolds, branes and the geometry of qubits
M. Cvetič, G. W. Gibbons and C. N. Pope Journal of High Energy Physics 2016 (1) (2016) https://doi.org/10.1007/JHEP01(2016)135
Time-optimal navigation through quantum wind
Dorje C Brody, Gary W Gibbons and David M Meier New Journal of Physics 17 (3) 033048 (2015) https://doi.org/10.1088/1367-2630/17/3/033048
Skyrmions from gravitational instantons
Maciej Dunajski Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469 (2151) 20120576 (2013) https://doi.org/10.1098/rspa.2012.0576
Hydrodynamic description of spin-1 Bose-Einstein condensates
Emi Yukawa and Masahito Ueda Physical Review A 86 (6) (2012) https://doi.org/10.1103/PhysRevA.86.063614
Geometric models of matter
M. F. Atiyah, N. S. Manton and B. J. Schroers Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468 (2141) 1252 (2012) https://doi.org/10.1098/rspa.2011.0616
Atomic interferometer measurements of Berry and Aharonov-Anandan phases for isolated spinsS>12nonlinearly coupled to external fields
Marie-Anne Bouchiat and Claude Bouchiat Physical Review A 83 (5) (2011) https://doi.org/10.1103/PhysRevA.83.052126
Berry's phases for arbitrary spins nonlinearly coupled to external fields: application to the entanglement ofN> 2 non-correlated 1/2-spins
Marie-Anne Bouchiat and Claude Bouchiat Journal of Physics A: Mathematical and Theoretical 43 (46) 465302 (2010) https://doi.org/10.1088/1751-8113/43/46/465302
Constructing Calabi–Yau metrics from hyperkähler spaces
H Lü, Yi Pang and Zhao-Long Wang Classical and Quantum Gravity 27 (15) 155018 (2010) https://doi.org/10.1088/0264-9381/27/15/155018
Geometrical approach to hydrodynamics and low-energy excitations of spinor condensates
Ryan Barnett, Daniel Podolsky and Gil Refael Physical Review B 80 (2) (2009) https://doi.org/10.1103/PhysRevB.80.024420
Encyclopedia of Magnetic Resonance
Josef W. Zwanziger Encyclopedia of Magnetic Resonance (2007) https://doi.org/10.1002/9780470034590.emrstm0189
Berry and Pancharatnam topological phases of atomic and optical systems
Y Ben-Aryeh Journal of Optics B: Quantum and Semiclassical Optics 6 (4) R1 (2004) https://doi.org/10.1088/1464-4266/6/4/R01
Bianchi IX self-dual Einstein metrics and singular
G
2
manifolds
M Cvetic, G W Gibbons, H L and C N Pope Classical and Quantum Gravity 20 (19) 4239 (2003) https://doi.org/10.1088/0264-9381/20/19/308
Geometric phase and helicity inversion of photons propagating inside a noncoplanarly curved optical fiber
Jian-Qi Shen and Li-Hong Ma Physics Letters A 308 (5-6) 355 (2003) https://doi.org/10.1016/S0375-9601(03)00118-X
Exact solutions to the time‐dependent supersymmetric Jaynes‐Cummings model and the Chiao‐Wu model
J.‐Q. Shen and H.Y. Zhu Annalen der Physik 515 (3) 131 (2003) https://doi.org/10.1002/andp.20035150301
Effect of noise on geometric logic gates for quantum computation
A. Blais and A.-M. S. Tremblay Physical Review A 67 (1) (2003) https://doi.org/10.1103/PhysRevA.67.012308
Raman spectroscopy of NiSe2and NiS2-xSex(0
C de las Heras and F Agulló-Rueda Journal of Physics: Condensed Matter 12 (24) 5317 (2000) https://doi.org/10.1088/0953-8984/12/24/320
Geometric phase decomposition for exactly solvable cases with interaction
R Aleksiejunas and V Ivaska Journal of Physics A: Mathematical and General 33 (12) 2383 (2000) https://doi.org/10.1088/0305-4470/33/12/306
The Berry phase for spin in the Majorana representation
J H Hannay Journal of Physics A: Mathematical and General 31 (2) L53 (1998) https://doi.org/10.1088/0305-4470/31/2/002
The Majorana representation of polarization, and the Berry phase of light
J. H. Hannay Journal of Modern Optics 45 (5) 1001 (1998) https://doi.org/10.1080/09500349808230892
A generalized Pancharatnam geometric phase formula for three-level quantum systems
Arvind, K S Mallesh and N Mukunda Journal of Physics A: Mathematical and General 30 (7) 2417 (1997) https://doi.org/10.1088/0305-4470/30/7/021
Kähler–Einstein metrics with SU(2) action
Andrew S. Dancer and Ian A. B. Strachan Mathematical Proceedings of the Cambridge Philosophical Society 115 (3) 513 (1994) https://doi.org/10.1017/S0305004100072273
Nonadiabatic geometric phases of multiphoton transitions in dissipative systems and spin-
J
systems
Eric G. Layton and Shih-I Chu Radiation Effects and Defects in Solids null (1) 73 (1994) https://doi.org/10.1080/10420159108220500
Classification of cyclic initial states and geometric phase for the spin-j system
N R Skrynnikov, J Zhou and B C Sanctuary Journal of Physics A: Mathematical and General 27 (18) 6253 (1994) https://doi.org/10.1088/0305-4470/27/18/033
Non-cyclic geometric phases in a proposed two-photon interferometric experiment
J Christian and A Shimony Journal of Physics A: Mathematical and General 26 (20) 5551 (1993) https://doi.org/10.1088/0305-4470/26/20/036
Typical states and density matrices
G.W. Gibbons Journal of Geometry and Physics 8 (1-4) 147 (1992) https://doi.org/10.1016/0393-0440(92)90046-4
A representation of the Guichardet connection in the Aharonov-Anandan connection
Toshihiro Iwai Physics Letters A 162 (4) 289 (1992) https://doi.org/10.1016/0375-9601(92)90018-H
A group theoretic treatment of the geometric phase
E.C.G. Sudarshan, J. Anandan and T.R. Govindarajan Physics Letters A 164 (2) 133 (1992) https://doi.org/10.1016/0375-9601(92)90691-E
The geometric phase from imaginary time translations
Adrian Stanley Physics Letters A 160 (1) 31 (1991) https://doi.org/10.1016/0375-9601(91)90201-I
Evolution of light beams in polarization and direction
Rajendra Bhandari Physica B: Condensed Matter 175 (1-3) 111 (1991) https://doi.org/10.1016/0921-4526(91)90699-F
Geometry of quantum evolution and the coherent state
Subir K. Bose and Binayak Dutta-Roy Physical Review A 43 (7) 3217 (1991) https://doi.org/10.1103/PhysRevA.43.3217
Formally exact solution and geometric phase for the spin-j system
Xiao-Chun Gao, Jing-Bo Xu and Tie-Zheng Qian Physics Letters A 152 (9) 449 (1991) https://doi.org/10.1016/0375-9601(91)90552-J
Cyclic quantum evolution and Aharonov-Anandan geometric phases in SU(2) spin-coherent states
Eric Layton, Youhong Huang and Shih-I Chu Physical Review A 41 (1) 42 (1990) https://doi.org/10.1103/PhysRevA.41.42
Floquet theory and the non-adiabatic Berry phase
D J Moore Journal of Physics A: Mathematical and General 23 (13) L665 (1990) https://doi.org/10.1088/0305-4470/23/13/006
What is a typical wave function for the universe?
G.W. Gibbons and L.P. Grishchuk Nuclear Physics B 313 (3) 736 (1989) https://doi.org/10.1016/0550-3213(89)90405-7
Berry phases for quadratic spin Hamiltonians taken from atomic and solid state physics: examples of Abelian gauge fields not connected to physical particles
C. Bouchiat Journal de Physique 50 (9) 1041 (1989) https://doi.org/10.1051/jphys:019890050090104100
Geometric phase in an arbitrary evolution of a light beam
Rajendra Bhandari Physics Letters A 135 (4-5) 240 (1989) https://doi.org/10.1016/0375-9601(89)90105-9
Density matrix formulation of complex geometric quantum phases in dissipative systems
Shih-I Chu, Zhong-Chao Wu and Eric Layton Chemical Physics Letters 157 (1-2) 151 (1989) https://doi.org/10.1016/0009-2614(89)87225-2
Geometric angles in quantum and classical physics
J. Anandan Physics Letters A 129 (4) 201 (1988) https://doi.org/10.1016/0375-9601(88)90350-7