La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
M. A. Moore
J. Phys. France, 38 3 (1977) 265-271
Citations de cet article :
50 articles
Scaling, tricriticality, and crossover in polymer solutions
M. A. Anisimov * and J. V. Sengers Molecular Physics 103 (21-23) 3061 (2005) https://doi.org/10.1080/0026970500235834
Competition of mesoscales and crossover to theta-point tricriticality in near-critical polymer solutions
M. A. Anisimov, A. F. Kostko, J. V. Sengers and I. K. Yudin The Journal of Chemical Physics 123 (16) (2005) https://doi.org/10.1063/1.2056543
Scaling of demixing curves and crossover from critical to tricritical behavior in polymer solutions
J. S. Hager, M. A. Anisimov, J. V. Sengers and E. E. Gorodetskiı̆ The Journal of Chemical Physics 117 (12) 5940 (2002) https://doi.org/10.1063/1.1502249
Stochastic Dynamics in Irreversible Nonequilibrium Environments. 2. A Model for Thermosetting Polymerization
Rigoberto Hernandez and Frank L. Somer The Journal of Physical Chemistry B 103 (7) 1070 (1999) https://doi.org/10.1021/jp9836269
Small-angle X-ray scattering from poly(methylmethacrylate) in aqueous solutions oft-butyl alcohol
Shigeru Shimizu, Yujirou Aiki, Hiroki Ikake and Kimio Kurita Journal of Polymer Science Part B: Polymer Physics 37 (16) 2195 (1999) https://doi.org/10.1002/(SICI)1099-0488(19990815)37:16<2195::AID-POLB21>3.0.CO;2-W
Small-angle X-ray scattering studies of semidilute polystyrene-cyclohexane solutions
Yonglin Xie, Karl F. Ludwig, Rama Bansil, Patrick D. Gallagher, Xingxiang Cao and Guarionex Morales Physica A: Statistical Mechanics and its Applications 232 (1-2) 94 (1996) https://doi.org/10.1016/0378-4371(96)00218-X
Chain collapse by lattice simulation
Genzo Tanaka and Wayne L. Mattice Macromolecular Theory and Simulations 5 (3) 499 (1996) https://doi.org/10.1002/mats.1996.040050308
Interaction parameters of poly(vinyl methyl ether) in aqueous solution as determined by small-angle neutron scattering
K. Okano, M. Takada, K. Kurita and M. Furusaka Polymer 35 (11) 2284 (1994) https://doi.org/10.1016/0032-3861(94)90762-5
Coexistence Curve of Dilute Polymer Solution in a Mixed Solvent Having Critical Demixing Point
Masako Takada, Koji Okano and Kimio Kurita Polymer Journal 26 (2) 113 (1994) https://doi.org/10.1295/polymj.26.113
Variational approach to the conformation of flexible polymers in solution
J. Melenkevitz, J. G. Curro and K. S. Schweizer The Journal of Chemical Physics 99 (7) 5571 (1993) https://doi.org/10.1063/1.465949
Advances in Chemical Engineering Volume 15
H.J. Ploehn and W.B. Russel Advances in Chemical Engineering, Advances in Chemical Engineering Volume 15 15 137 (1990) https://doi.org/10.1016/S0065-2377(08)60194-5
Small-Angle X-Ray Scattering from Semidilute Polymer Solutions. Deuterated Polystyrene–Deuterated Cyclohexane System
Takashi Ichimura, Koji Okano, Kimio Kurita and Eiichi Wada Polymer Journal 20 (4) 333 (1988) https://doi.org/10.1295/polymj.20.333
Renormalization group description of the screening of the hydrodynamic interaction in polymer solutions
S. Stepanow Journal de Physique 49 (6) 921 (1988) https://doi.org/10.1051/jphys:01988004906092100
Coexistence curve of semidilute polymer solutions
K. Okano, T. Ichimura, K. Kurita and E. Wada Polymer 28 (5) 693 (1987) https://doi.org/10.1016/0032-3861(87)90213-8
Semidilute polymer solutions in the theta domain: A renormalization group study
Binny J. Cherayil, A. L. Kholodenko and Karl F. Freed The Journal of Chemical Physics 86 (12) 7204 (1987) https://doi.org/10.1063/1.452322
Small-angle X-ray scattering and coexistence curve of semidilute polymer solutions
T. Ichimura, K. Okano, K. Kurita and E. Wada Polymer 28 (9) 1573 (1987) https://doi.org/10.1016/0032-3861(87)90361-2
Polymer degradation in porous media flow
Raymond S. Farinato and Wei S. Yen Journal of Applied Polymer Science 33 (7) 2353 (1987) https://doi.org/10.1002/app.1987.070330708
Polymer correlation functions and spurious singularities inn=0field theory
Lothar Schäfer Physical Review B 35 (10) 5184 (1987) https://doi.org/10.1103/PhysRevB.35.5184
The Unified Renormalization Group Description of Dilute and Semi‐dilute Polymer Solutions
G. Helmis and S. Stepanow Annalen der Physik 498 (3-5) 225 (1986) https://doi.org/10.1002/andp.19864980314
Dynamic Light Scattering
D. W. Schaefer and C. C. Han Dynamic Light Scattering 181 (1985) https://doi.org/10.1007/978-1-4613-2389-1_5
Theory of semi-dilute polymer solutions. II. Correlation functions in a good solvent
A Nakanishi and T Ohta Journal of Physics A: Mathematical and General 18 (1) 127 (1985) https://doi.org/10.1088/0305-4470/18/1/024
Universalité des propriétés statiques des polymères en solution semi-diluée
A. Lapp, Cl. Picot and Cl. Strazielle Journal de Physique Lettres 46 (21) 1031 (1985) https://doi.org/10.1051/jphyslet:0198500460210103100
A unified model for the structure of polymers in semidilute solution
Dale W Schaefer Polymer 25 (3) 387 (1984) https://doi.org/10.1016/0032-3861(84)90292-1
Is chemical mismatch important in polymer solutions?
J. F. Joanny, Ludwik Leibler and Robin Ball The Journal of Chemical Physics 81 (10) 4640 (1984) https://doi.org/10.1063/1.447399
Structure of polymer solutions: scaling and modelling on an electronic computer
T.M. Birshtein, A.M. Skvortsov and A.A. Sariban Polymer 24 (9) 1145 (1983) https://doi.org/10.1016/0032-3861(83)90247-1
Field Theoretic Renormalization Group and the Scaling Behaviour in Polymer Solutions
S. Stepanow Annalen der Physik 495 (6) 301 (1983) https://doi.org/10.1002/andp.19834950602
Extrapolation formulas for polymer solution properties
M. Muthukumar and S. F. Edwards The Journal of Chemical Physics 76 (5) 2720 (1982) https://doi.org/10.1063/1.443257
Diagram of state for a solution of semi-rigid macromolecules
T.M. Birshtein Polymer Science U.S.S.R. 24 (10) 2416 (1982) https://doi.org/10.1016/0032-3950(82)90114-9
The negative susceptibility of the n=0 vector model and polymer statistics
S P Obukhov Journal of Physics A: Mathematical and General 15 (4) L211 (1982) https://doi.org/10.1088/0305-4470/15/4/011
Conformation space renormalization theory of semidilute polymer solutions
T. Ohta and Y. Oono Physics Letters A 89 (9) 460 (1982) https://doi.org/10.1016/0375-9601(82)90813-1
Lagrangian tricritical theory of polymer chain solutions near the θ-point
B. Duplantier Journal de Physique 43 (7) 991 (1982) https://doi.org/10.1051/jphys:01982004307099100
Zur Theorie verdünnter Polymerlösungen aus zwei unterschiedlichen Polymerarten
S. Stepanow Acta Polymerica 32 (2) 98 (1981) https://doi.org/10.1002/actp.1981.010320206
An approach to direct renormalization of polymer properties in dilute solution
S. Stepanow Acta Polymerica 32 (6) 308 (1981) https://doi.org/10.1002/actp.1981.010320604
Polymers in poor solvents : loop expansion of irreducible diagrams. (II)
J. des Cloizeaux Journal de Physique 41 (8) 761 (1980) https://doi.org/10.1051/jphys:01980004108076100
Renormalized field theory of polymer solutions : extension to general polydispersity
L. Schäfer and T.A. Witten Journal de Physique 41 (6) 459 (1980) https://doi.org/10.1051/jphys:01980004106045900
A description of the physical properties of polymer solutions in terms of irreducible diagrams. (I)
J. des Cloizeaux Journal de Physique 41 (8) 749 (1980) https://doi.org/10.1051/jphys:01980004108074900
Lagrangian theory of polymer chains in a poor solvent: Tricritical properties
B. Duplantier Ferroelectrics 30 (1) 9 (1980) https://doi.org/10.1080/00150198008209481
A new approach to polymer solution theory
M A Moore and C A Wilson Journal of Physics A: Mathematical and General 13 (11) 3501 (1980) https://doi.org/10.1088/0305-4470/13/11/022
Tricritical properties of polymer chains in a poor solvent
B. Duplantier Journal de Physique Lettres 41 (17) 409 (1980) https://doi.org/10.1051/jphyslet:019800041017040900
Some Remarks on the n=0 Problem in Critical Phenomena
R. Abe Progress of Theoretical Physics 62 (1) 98 (1979) https://doi.org/10.1143/PTP.62.98
Binary and ternary cluster integrals of polymer segments as determined by small angle neutron scattering
K. Okano, E. Wada, K. Kurita, H. Hiramatsu and H. Fukuro Journal de Physique Lettres 40 (7) 171 (1979) https://doi.org/10.1051/jphyslet:01979004007017100
Vulcanization and critical exponents
M. Daoud Journal de Physique Lettres 40 (9) 201 (1979) https://doi.org/10.1051/jphyslet:01979004009020100
Temperature dependence of chain dimensions
R.W. Richards, A. Maconnachie and G. Allen Polymer 19 (3) 266 (1978) https://doi.org/10.1016/0032-3861(78)90219-7
Neutron scattering and amorphous polymers
Ann Maconnachie and Randal W. Richards Polymer 19 (7) 739 (1978) https://doi.org/10.1016/0032-3861(78)90001-0
Statistics of trees and branched polymers from a generalised Hilhorst model
T C Lubensky, C Dasgupta and C M Chaves Journal of Physics A: Mathematical and General 11 (11) 2219 (1978) https://doi.org/10.1088/0305-4470/11/11/010
Developments in Polymer Characterisation—1
R. W. Richards Developments in Polymer Characterisation—1 117 (1978) https://doi.org/10.1007/978-94-009-9646-5_5
Cross-over in polymer solutions
B. Farnoux, F. Boue, J.P. Cotton, et al. Journal de Physique 39 (1) 77 (1978) https://doi.org/10.1051/jphys:0197800390107700
Self-consistent field theories of the polymer excluded volume problem. IV. The linear polymer
Marios K. Kosmas and Karl F. Freed The Journal of Chemical Physics 68 (11) 4878 (1978) https://doi.org/10.1063/1.435643
Field Theory for the Statistics of Branched Polymers, Gelation, and Vulcanization
T. C. Lubensky and Joel Isaacson Physical Review Letters 41 (12) 829 (1978) https://doi.org/10.1103/PhysRevLett.41.829
The size of a polymer molecule in semi-dilute solution
M. A. Moore and G.F. Al-Noaimi Journal de Physique 39 (9) 1015 (1978) https://doi.org/10.1051/jphys:019780039090101500