Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Light-induced hydrodynamic reorientation of hybrid aligned nematic liquid crystals caused by direct volume expansion

T. Dadalyan, K. Petrosyan, R. Alaverdyan and R. Hakobyan
Liquid Crystals 46 (5) 694 (2019)
https://doi.org/10.1080/02678292.2018.1518549

Numerical Simulations of Shear Flows of a Tumbling Liquid Crystal between Concentric Cylinders

Tomohiro Tsuji and Shigeomi Chono
Nihon Reoroji Gakkaishi 40 (5) 239 (2013)
https://doi.org/10.1678/rheology.40.239

Rheo-NMR studies of a nematic worm-like micelle system in a high-shear-rate regime

Chris Lepper, Patrick J. B. Edwards, Robin Dykstra and Martin A. K. Williams
Soft Matter 7 (21) 10291 (2011)
https://doi.org/10.1039/c1sm06126g

Rheo-NMR studies of the behavior of a nematic liquid crystal in a low-shear-rate regime: The transition from director alignment to reorientation

C. Lepper, P. J. B. Edwards, E. Schuster, et al.
Physical Review E 82 (4) (2010)
https://doi.org/10.1103/PhysRevE.82.041712

Shear flow induced microstructure of a synthetic mesophase pitch

Santanu Kundu, Dana Grecov, Amod A. Ogale and Alejandro D. Rey
Journal of Rheology 53 (1) 85 (2009)
https://doi.org/10.1122/1.3006099

Solitons and defects in nematic liquid crystals under a simple shear flow and in a static external magnetic field

Luo Kai-Fu, Jiang Xiu-Li and Yang Yu-Liang
Chinese Physics B 17 (7) 2600 (2008)
https://doi.org/10.1088/1674-1056/17/7/043

The structure of a planar nematic liquid crystal in an oscillating Couette flow beyond the stability threshold

E. N. Kozhevnikov
Acoustical Physics 54 (1) 25 (2008)
https://doi.org/10.1134/S1063771008010053

Ericksen number and Deborah number cascade predictions of a model for liquid crystalline polymers for simple shear flow

D. Harley Klein, L. Gary Leal, Carlos J. García-Cervera and Hector D. Ceniceros
Physics of Fluids 19 (2) (2007)
https://doi.org/10.1063/1.2424499

Orientational instabilities in nematic liquid crystals with weak anchoring under combined action of steady flow and external fields

I. Sh. Nasibullayev, O. S. Tarasov, A. P. Krekhov and L. Kramer
Physical Review E 72 (5) (2005)
https://doi.org/10.1103/PhysRevE.72.051706

Impact of texture on stress growth in thermotropic liquid crystalline polymers subjected to step-shear

Dana Grecov and Alejandro D. Rey
Rheologica Acta 44 (2) 135 (2004)
https://doi.org/10.1007/s00397-004-0389-0

Theoretical analysis of the stability of shear flow of nematic liquid crystals with a positive Leslie viscosity α3

Tomas Carlsson and Christian Högfors
Journal of Non-Newtonian Fluid Mechanics 119 (1-3) 25 (2004)
https://doi.org/10.1016/j.jnnfm.2003.02.002

Effects of elastic anisotropy on the flow and orientation of sheared nematic liquid crystals

Jianjun Tao and James J. Feng
Journal of Rheology 47 (4) 1051 (2003)
https://doi.org/10.1122/1.1584429

Defects in Liquid Crystals: Computer Simulations, Theory and Experiments

M. Kleman and C. Meyer
Defects in Liquid Crystals: Computer Simulations, Theory and Experiments 301 (2001)
https://doi.org/10.1007/978-94-010-0512-8_12

Morphological and Rheological Responses to Shear Start-up and Flow Reversal of Thermotropic Liquid-Crystalline Polymers

Patrick T. Mather, Hong G. Jeon, Chang Dae Han and Sukky Chang
Macromolecules 33 (20) 7594 (2000)
https://doi.org/10.1021/ma000765r

Nematic Liquid Crystal under Plane Oscillatory Flows

O. S. Tarasov, A. P. Krekhov and L. Kramer
Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 328 (1) 573 (1999)
https://doi.org/10.1080/10587259908026102

Rotation of liquid crystalline macromolecules in shear flow and shear-induced periodic orientation patterns

J�rg A. M�ller, Richard S. Stein and H. Henning Winter
Rheologica Acta 35 (2) 160 (1996)
https://doi.org/10.1007/BF00396043

Flow patterns and disclination-density measurements in sheared nematic liquid crystals II: Tumbling 8CB

P. T. Mather, D. S. Pearson and R. G. Larson
Liquid Crystals 20 (5) 539 (1996)
https://doi.org/10.1080/02678299608031140

Electrohydrodynamic Instability in Homeotropically Oriented Nematic Cyanobiphenyls

D. K. Rout and R. N. P. Choudhary
Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 172 (1) 99 (1989)
https://doi.org/10.1080/00268948908042155

A linear analysis of instabilities in Couette flow of nematic liquid crystals

P. J. Barratt, J. M. Manley and V. A. Nye
Rheologica Acta 26 (4) 343 (1987)
https://doi.org/10.1007/BF01332252

Mössbauer effect evidence of chlorine environments in ferric oxyhydroxides from iron corrosion in chlorinated aqueous solution

Ph. Bauer, J. M. Genin and D. Rezel
Hyperfine Interactions 28 (1-4) 757 (1986)
https://doi.org/10.1007/BF02061556

Homogeneous Instability in Free Convection of Nematics—Effect of an Oblique Magnetic Field

U. D. Kini
Molecular Crystals and Liquid Crystals 128 (1-2) 1 (1985)
https://doi.org/10.1080/00268948508082184

A theoretical investigation of Benard-Couette instabilities in nematic liquid crystals

P J Barratt and I Zuniga
Journal of Physics D: Applied Physics 17 (4) 775 (1984)
https://doi.org/10.1088/0022-3727/17/4/016

A Linear Analysis of Instabilities Occurring in Plane Shear Flow of Nematic Liquid Crystals when a Vertical Temperature Gradient is Present

P. J. Barratt and J. M. Manley
Journal of Non-Equilibrium Thermodynamics 8 (2) (1983)
https://doi.org/10.1515/jnet.1983.8.2.143

A theoretical investigation of the Pieranski—Guyon instability in Couette flow of nematic liquid crystals

P.J. Barratt and I. Zuniga
Journal of Non-Newtonian Fluid Mechanics 11 (1-2) 23 (1982)
https://doi.org/10.1016/0377-0257(82)85013-1

A Study of Flow Alignment Instability During Rectilinear Oscillatory Shear of Nematics

M. G. Clark, F. C. Saunders, I. A. Shanks and F. M. Leslie
Molecular Crystals and Liquid Crystals 70 (1) 195 (1981)
https://doi.org/10.1080/00268948108073590

Electro-convective Flows and Domain Instablilities in Nematic Liquid Crystals

L. M. Blinov, A. N. Trufanov, V. G. Chigrinov and M. I. Barnik
Molecular Crystals and Liquid Crystals 74 (1) 1 (1981)
https://doi.org/10.1080/00268948108073690

A calculation of shear rate thresholds for homogeneous and roll type instabilities in nematics subjected to simple shear flow

P J Barratt and J Manley
Journal of Physics D: Applied Physics 14 (10) 1831 (1981)
https://doi.org/10.1088/0022-3727/14/10/016

Different roll regimes in shear-excited NLC

F. Scudieri, A. Ferrari and A. Fedtchouk
Journal of Applied Physics 49 (3) 1289 (1978)
https://doi.org/10.1063/1.325023

Les instabilitiés hydrodynamiques en convection libre, forcée et mixte

Paul Manneville
Lecture Notes in Physics, Les instabilitiés hydrodynamiques en convection libre, forcée et mixte 72 33 (1978)
https://doi.org/10.1007/3-540-08652-8_21

Les instabilitiés hydrodynamiques en convection libre, forcée et mixte

E. Dubóis-Violette, E. Guyon and P. Pieranski
Lecture Notes in Physics, Les instabilitiés hydrodynamiques en convection libre, forcée et mixte 72 179 (1978)
https://doi.org/10.1007/3-540-08652-8_34