La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
J. Souletie
J. Phys. France, 51 9 (1990) 883-898
Citations de cet article :
45 articles
Steepness-fragility insights from the temperature derivative analysis of dielectric data of a highly nonsymmetric liquid crystal dimer
Josep Salud, Nerea Sebastián, María R. de la Fuente, S. Diez-Berart and David O. López Physical Review E 110 (2) (2024) https://doi.org/10.1103/PhysRevE.110.024702
Glassy relaxation in a de Vries smectic liquid crystal consisting of bent-core molecules
Vishnu Deo Mishra, G. Pratap and Arun Roy Physical Review E 109 (2) (2024) https://doi.org/10.1103/PhysRevE.109.024703
Undercooled phase behind the glass phase with superheated medium-range order above glass transition temperature
Robert F. Tournier and Michael I. Ojovan Physica B: Condensed Matter 602 412542 (2021) https://doi.org/10.1016/j.physb.2020.412542
From the Kinetic Theory of Gases to the Kinetics of Rate Processes: On the Verge of the Thermodynamic and Kinetic Limits
Valter H. Carvalho-Silva, Nayara D. Coutinho and Vincenzo Aquilanti Molecules 25 (9) 2098 (2020) https://doi.org/10.3390/molecules25092098
First-order transitions in glasses and melts induced by solid superclusters nucleated and melted by homogeneous nucleation instead of surface melting
Robert F. Tournier Chemical Physics 524 40 (2019) https://doi.org/10.1016/j.chemphys.2019.02.006
Predicting glass-to-glass and liquid-to-liquid phase transitions in supercooled water using classical nucleation theory
Robert F. Tournier Chemical Physics 500 45 (2018) https://doi.org/10.1016/j.chemphys.2017.11.008
Generic features of the primary relaxation in glass-forming materials (Review Article)
Valery B. Kokshenev Low Temperature Physics 43 (8) 942 (2017) https://doi.org/10.1063/1.5001294
Glass phase and other multiple liquid-to-liquid transitions resulting from two-liquid phase competition
Robert F. Tournier Chemical Physics Letters 665 64 (2016) https://doi.org/10.1016/j.cplett.2016.10.047
4He glass phase: A model for liquid elements
Robert F. Tournier and Jacques Bossy Chemical Physics Letters 658 282 (2016) https://doi.org/10.1016/j.cplett.2016.06.070
Lindemann's rule applied to the melting of crystals and ultra-stable glasses
Robert F. Tournier Chemical Physics Letters 651 198 (2016) https://doi.org/10.1016/j.cplett.2016.03.043
Formation temperature of ultra-stable glasses and application to ethylbenzene
Robert F. Tournier Chemical Physics Letters 641 9 (2015) https://doi.org/10.1016/j.cplett.2015.09.032
Fragile-to-fragile liquid transition at Tg and stable-glass phase nucleation rate maximum at the Kauzmann temperature TK
Robert F. Tournier Physica B: Condensed Matter 454 253 (2014) https://doi.org/10.1016/j.physb.2014.07.069
Cluster relaxation dynamics in liquids and solids near the glass-transformation temperature
V. B. Kokshenev Low Temperature Physics 33 (6) 617 (2007) https://doi.org/10.1063/1.2755208
Primary relaxation in regular and irregular glass-forming liquids studied through their timescale steepness and curvature
Valery B. Kokshenev Journal of Non-Crystalline Solids 352 (32-35) 3380 (2006) https://doi.org/10.1016/j.jnoncrysol.2006.03.077
Moderately and strongly supercooled liquids: A temperature-derivative study of the primary relaxation time scale
Valery B. Kokshenev, Pablo D. Borges and Neil S. Sullivan The Journal of Chemical Physics 122 (11) (2005) https://doi.org/10.1063/1.1855877
Universal scaling, dynamic fragility, segmental relaxation, and vitrification in polymer melts
Erica J. Saltzman and Kenneth S. Schweizer The Journal of Chemical Physics 121 (4) 2001 (2004) https://doi.org/10.1063/1.1756856
Entropic barriers, activated hopping, and the glass transition in colloidal suspensions
Kenneth S. Schweizer and Erica J. Saltzman The Journal of Chemical Physics 119 (2) 1181 (2003) https://doi.org/10.1063/1.1578632
Heterogeneous dynamics in liquids: fluctuations in space and time
Ranko Richert Journal of Physics: Condensed Matter 14 (23) R703 (2002) https://doi.org/10.1088/0953-8984/14/23/201
Encyclopedia of Materials: Science and Technology
K. Binder Encyclopedia of Materials: Science and Technology 3553 (2001) https://doi.org/10.1016/B0-08-043152-6/00633-1
Dynamic scaling approach to glass formation
Ralph H. Colby Physical Review E 61 (2) 1783 (2000) https://doi.org/10.1103/PhysRevE.61.1783
Segmental dynamics of miscible polymer blends: Comparison of the predictions of a concentration fluctuation model to experiment
Sudesh Kamath, Ralph H. Colby, Sanat K. Kumar, et al. The Journal of Chemical Physics 111 (13) 6121 (1999) https://doi.org/10.1063/1.479908
Slow relaxation near structural and orientational transitions in glass-forming liquids and solids
V. B. Kokshenev Physical Review E 57 (1) 1187 (1998) https://doi.org/10.1103/PhysRevE.57.1187
Dynamic properties of an incommensurate charge density wave in monoclinic TaS3 at low temperatures
F. Ya. Nad’ and P. Monceau Journal of Experimental and Theoretical Physics 84 (3) 545 (1997) https://doi.org/10.1134/1.558174
Amorphous Insulators and Semiconductors
C. A. Angell Amorphous Insulators and Semiconductors 1 (1997) https://doi.org/10.1007/978-94-015-8832-4_1
The glass transition
C Austen Angell Current Opinion in Solid State and Materials Science 1 (4) 578 (1996) https://doi.org/10.1016/S1359-0286(96)80076-3
Temperature and composition dependence of viscosity. II. Temperature dependence of viscosity of propylene carbonate-dimethoxyethane mixtures
J. Barthel, H. -J. Gores, K. Gro� and M. Utz Journal of Solution Chemistry 25 (6) 515 (1996) https://doi.org/10.1007/BF00973082
Charge-density-wave glass state in quasi-one-dimensional conductors
F. Nad’ and P. Monceau Physical Review B 51 (4) 2052 (1995) https://doi.org/10.1103/PhysRevB.51.2052
Formation of Glasses from Liquids and Biopolymers
C. A. Angell Science 267 (5206) 1924 (1995) https://doi.org/10.1126/science.267.5206.1924
Low-frequency permittivity of spin-density wave in (TMTSF)2PF6 at low temperatures
F Nad', P Monceau and K Bechgaard Solid State Communications 95 (10) 655 (1995) https://doi.org/10.1016/0038-1098(95)00360-6
A new way of interpreting thermally stimulated depolarization currents of polymers using the coupling model in a broad temperature range
Eve Marchal Journal of Non-Crystalline Solids 172-174 902 (1994) https://doi.org/10.1016/0022-3093(94)90596-7
Dynamical behaviour of low autocorrelation models
G Migliorini and F Ritort Journal of Physics A: Mathematical and General 27 (23) 7669 (1994) https://doi.org/10.1088/0305-4470/27/23/012
Isothermal glass transitions in supercooled and overcompressed liquids
C. Alba-Simionesco The Journal of Chemical Physics 100 (3) 2250 (1994) https://doi.org/10.1063/1.466523
Disorder Effects on Relaxational Processes
R. Schilling Disorder Effects on Relaxational Processes 193 (1994) https://doi.org/10.1007/978-3-642-78576-4_6
Hierarchical scaling: An analytical approach to slow relaxations in spin glasses, glasses, and other correlated systems (invited)
J. Souletie Journal of Applied Physics 75 (10) 5512 (1994) https://doi.org/10.1063/1.355673
Glass-forming liquids, anomalous liquids, and polyamorphism in liquids and biopolymers
C. A. Angell, P. H. Poole and J. Shao Il Nuovo Cimento D 16 (8) 993 (1994) https://doi.org/10.1007/BF02458784
Relaxational dynamics in supercooled liquids: experimental tests of the mode coupling theory
H.Z. Cummins, G. Li, W.M. Du and J. Hernandez Physica A: Statistical Mechanics and its Applications 204 (1-4) 169 (1994) https://doi.org/10.1016/0378-4371(94)90424-3
Structural relaxation in supercooled glass-forming solutions: a neutron spin-echo study of LiCl,6D2O
B Prevel, J Dupuy-Philon, J F Jal, J F Legrand and P Chieux Journal of Physics: Condensed Matter 6 (7) 1279 (1994) https://doi.org/10.1088/0953-8984/6/7/001
Low temperature specific heat of the spin-density-wave compound (TMTSF)2PF6
J. Odin, J.C. Lasjaunias, K. Biljaković, P. Monceau and K. Bechgaard Solid State Communications 91 (7) 523 (1994) https://doi.org/10.1016/0038-1098(94)90367-0
Phase Transitions and Relaxation in Systems with Competing Energy Scales
K. Biljaković Phase Transitions and Relaxation in Systems with Competing Energy Scales 339 (1993) https://doi.org/10.1007/978-94-011-1908-5_16
Transition of charge-density-wave conductors into a glassy-like state
F.Ya Nad' and P. Monceau Solid State Communications 87 (1) 13 (1993) https://doi.org/10.1016/0038-1098(93)90527-T
Metastable phase formation in particle-bombarded metallic systems
P. M. Ossi La Rivista del Nuovo Cimento 15 (5) 1 (1992) https://doi.org/10.1007/BF02742987
Investigations on macroscopic intrinsic stress in amorphous binary‐alloy films
S. Dina, U. Geyer and G. v. Minnigerode Annalen der Physik 504 (3) 164 (1992) https://doi.org/10.1002/andp.19925040303
Scaling theory for the glass transition
James P. Sethna, Joel D. Shore and Ming Huang Physical Review B 44 (10) 4943 (1991) https://doi.org/10.1103/PhysRevB.44.4943
Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems
C.A Angell Journal of Non-Crystalline Solids 131-133 13 (1991) https://doi.org/10.1016/0022-3093(91)90266-9
Magnetic Susceptibility of Superconductors and Other Spin Systems
Jean-Louis Tholence Magnetic Susceptibility of Superconductors and Other Spin Systems 503 (1991) https://doi.org/10.1007/978-1-4899-2379-0_27