La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
R. Rammal , J. Bellissard
J. Phys. France, 51 17 (1990) 1803-1830
Citations de cet article :
70 articles
Spectral Regularity and Defects for the Kohmoto Model
Siegfried Beckus, Jean Bellissard and Yannik Thomas Annales Henri Poincaré (2025) https://doi.org/10.1007/s00023-025-01578-8
Towards full instanton trans-series in Hofstadter’s butterfly
Jie Gu and Zhaojie Xu Journal of High Energy Physics 2025 (2) (2025) https://doi.org/10.1007/JHEP02(2025)099
Jean Bellissard 700 (2024) https://doi.org/10.1016/B978-0-323-90800-9.00264-X
Jean Bellissard 712 (2024) https://doi.org/10.1016/B978-0-323-90800-9.00261-4
From Orbital Magnetism to Bulk-Edge Correspondence
Horia D. Cornean, Massimo Moscolari and Stefan Teufel Annales Henri Poincaré (2024) https://doi.org/10.1007/s00023-024-01501-7
Dilations of q-Commuting Unitaries
Malte Gerhold and Orr Moshe Shalit International Mathematics Research Notices 2022 (1) 63 (2022) https://doi.org/10.1093/imrn/rnaa093
Spectral analysis near a Dirac type crossing in a weak non-constant magnetic field
Horia Cornean, Bernard Helffer and Radu Purice Transactions of the American Mathematical Society (2021) https://doi.org/10.1090/tran/8402
Chaos on the hypercube
Yiyang Jia and Jacobus J. M. Verbaarschot Journal of High Energy Physics 2020 (11) (2020) https://doi.org/10.1007/JHEP11(2020)154
Landau levels, response functions and magnetic oscillations from a generalized Onsager relation
Jean-Noël Fuchs, Frédéric Piéchon and Gilles Montambaux SciPost Physics 4 (5) (2018) https://doi.org/10.21468/SciPostPhys.4.5.024
Semiclassical theory of Landau levels and magnetic breakdown in topological metals
A. Alexandradinata and Leonid Glazman Physical Review B 97 (14) (2018) https://doi.org/10.1103/PhysRevB.97.144422
Perturbative/nonperturbative aspects of Bloch electrons in a honeycomb lattice
Yasuyuki Hatsuda Progress of Theoretical and Experimental Physics 2018 (9) (2018) https://doi.org/10.1093/ptep/pty089
Derivation of Ray Optics Equations in Photonic Crystals via a Semiclassical Limit
Giuseppe De Nittis and Max Lein Annales Henri Poincaré 18 (5) 1789 (2017) https://doi.org/10.1007/s00023-017-0552-7
A Computational Non-commutative Geometry Program for Disordered Topological Insulators
Emil Prodan SpringerBriefs in Mathematical Physics, A Computational Non-commutative Geometry Program for Disordered Topological Insulators 23 25 (2017) https://doi.org/10.1007/978-3-319-55023-7_3
Peierls substitution for magnetic Bloch bands
Silvia Freund and Stefan Teufel Analysis & PDE 9 (4) 773 (2016) https://doi.org/10.2140/apde.2016.9.773
Topological Insulators from the Perspective of Non-commutative Geometry and Index Theory
Hermann Schulz-Baldes Jahresbericht der Deutschen Mathematiker-Vereinigung 118 (4) 247 (2016) https://doi.org/10.1365/s13291-016-0142-5
Continuity of the Spectrum of a Field of Self-Adjoint Operators
Siegfried Beckus and Jean Bellissard Annales Henri Poincaré 17 (12) 3425 (2016) https://doi.org/10.1007/s00023-016-0496-3
Algebraic area enclosed by random walks on a lattice
Jean Desbois Journal of Physics A: Mathematical and Theoretical 48 (42) 425001 (2015) https://doi.org/10.1088/1751-8113/48/42/425001
Virtual topological insulators with real quantized physics
Emil Prodan Physical Review B 91 (24) (2015) https://doi.org/10.1103/PhysRevB.91.245104
Effect of electronic band dispersion curvature on de Haas-van Alphen oscillations
Jean-Yves Fortin and Alain Audouard The European Physical Journal B 88 (9) (2015) https://doi.org/10.1140/epjb/e2015-60013-x
Perturbative approach to flat Chern bands in the Hofstadter model
Fenner Harper, Steven H. Simon and Rahul Roy Physical Review B 90 (7) (2014) https://doi.org/10.1103/PhysRevB.90.075104
A non-commutative formula for the isotropic magneto-electric response
Bryan Leung and Emil Prodan Journal of Physics A: Mathematical and Theoretical 46 (8) 085205 (2013) https://doi.org/10.1088/1751-8113/46/8/085205
Random walk on a discrete Heisenberg group
Driss Gretete Rendiconti del Circolo Matematico di Palermo 60 (3) 329 (2011) https://doi.org/10.1007/s12215-011-0053-3
Berry curvature, orbital moment, and effective quantum theory of electrons in electromagnetic fields
Ming-Che Chang and Qian Niu Journal of Physics: Condensed Matter 20 (19) 193202 (2008) https://doi.org/10.1088/0953-8984/20/19/193202
Gaussian Beam Construction for Adiabatic Perturbations
M. Dimassi, J.-C. Guillot and J. Ralston Mathematical Physics, Analysis and Geometry 9 (3) 187 (2007) https://doi.org/10.1007/s11040-006-9009-9
The Mathematica GuideBook for Numerics
Michael Trott The Mathematica GuideBook for Numerics 1 (2006) https://doi.org/10.1007/0-387-28814-7_1
Influence of the anisotropy parameter on the spectrum of the generalizedq-symmetrized Harper equation
E Papp Journal of Physics A: Mathematical and General 36 (8) 2077 (2003) https://doi.org/10.1088/0305-4470/36/8/306
Semiclassical Analysis and the Magnetization of the Hofstadter Model
O. Gat and J. E. Avron Physical Review Letters 91 (18) (2003) https://doi.org/10.1103/PhysRevLett.91.186801
Magnetic fingerprints of fractal spectra and the duality of Hofstadter models
O Gat and J E Avron New Journal of Physics 5 44 (2003) https://doi.org/10.1088/1367-2630/5/1/344
Semiclassical asymptotics in magnetic Bloch bands
M Dimassi, J C Guillot and J Ralston Journal of Physics A: Mathematical and General 35 (35) 7597 (2002) https://doi.org/10.1088/0305-4470/35/35/304
The discrete harmonic oscillator, Harper's equation, and the discrete fractional Fourier transform
Laurence Barker, Çagatay Candan, Tugrul Hakioglu, M Alper Kutay and Haldun M Ozaktas Journal of Physics A: Mathematical and General 33 (11) 2209 (2000) https://doi.org/10.1088/0305-4470/33/11/304
The discrete fractional Fourier transform and Harper's equation
Laurence Barker Mathematika 47 (1-2) 281 (2000) https://doi.org/10.1112/S0025579300015898
APPLYING THE 1/N APPROXIMATION TO THE DERIVATION OF THE BAND ENERGY OF THE HARPER EQUATION
E. PAPP Modern Physics Letters B 14 (11) 373 (2000) https://doi.org/10.1142/S0217984900000501
Bandwidth statistics from the eigenvalue moments for the Harper-Hofstadter problem
O Lipan Journal of Physics A: Mathematical and General 33 (39) 6875 (2000) https://doi.org/10.1088/0305-4470/33/39/305
The action-angle Wigner function: a discrete, finite and algebraic phase space formalism
T Hakioglu and E Tepedelenlioglu Journal of Physics A: Mathematical and General 33 (36) 6357 (2000) https://doi.org/10.1088/0305-4470/33/36/307
Symmetry properties of exact energy solutions to the Harper equation and relatedq-normalizations
E Papp and C Micu Journal of Physics A: Mathematical and General 33 (37) 6615 (2000) https://doi.org/10.1088/0305-4470/33/37/313
Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects
Ganesh Sundaram and Qian Niu Physical Review B 59 (23) 14915 (1999) https://doi.org/10.1103/PhysRevB.59.14915
Bethe ansatz for the Harper equation: Solution for a small commensurability parameter
I. V. Krasovsky Physical Review B 59 (1) 322 (1999) https://doi.org/10.1103/PhysRevB.59.322
On spectral properties of Harper-like models
D. J. L. Herrmann and T. Janssen Journal of Mathematical Physics 40 (3) 1197 (1999) https://doi.org/10.1063/1.532795
Non-polynomial solutions to theq-difference form of the Harper equation
C Micu and E Papp Journal of Physics A: Mathematical and General 31 (12) 2881 (1998) https://doi.org/10.1088/0305-4470/31/12/012
Multiband energy spectra of spin-12electrons with two-dimensional magnetic modulations
Ming-Che Chang and Min-Fong Yang Physical Review B 57 (20) 13002 (1998) https://doi.org/10.1103/PhysRevB.57.13002
The Derivation of 1/N Energy-Solutions to the harper-Equation and Related Magnetizations
C. Micu and E. Papp International Journal of Modern Physics B 12 (18) 1847 (1998) https://doi.org/10.1142/S021797929800106X
AnSU(2) analogue of the Azbel-Hofstadter Hamiltonian
E G Floratos and S Nicolis Journal of Physics A: Mathematical and General 31 (17) 3961 (1998) https://doi.org/10.1088/0305-4470/31/17/007
Change of Hall conductance induced by band crossing
Ming-Yi Lee, Ming-Che Chang and Tzay-Ming Hong Physical Review B 57 (19) 11895 (1998) https://doi.org/10.1103/PhysRevB.57.11895
Two interacting Hofstadter butterflies
Armelle Barelli, Jean Bellissard, Philippe Jacquod and Dima L. Shepelyansky Physical Review B 55 (15) 9524 (1997) https://doi.org/10.1103/PhysRevB.55.9524
Fluctuation Phenomena in High Temperature Superconductors
S. A. Ktitorov and E. S. Babaev Fluctuation Phenomena in High Temperature Superconductors 301 (1997) https://doi.org/10.1007/978-94-011-5536-6_24
Hofstadter rules and generalized dimensions of the spectrum of Harper's equation
Andreas Rüdinger and Frédéric Piéchon Journal of Physics A: Mathematical and General 30 (1) 117 (1997) https://doi.org/10.1088/0305-4470/30/1/009
On the spectrum of a random walk on the discrete Heisenberg group and the norm of Harper's operator
Cédric Béguin, Alain Valette and Andrzej Zuk Journal of Geometry and Physics 21 (4) 337 (1997) https://doi.org/10.1016/S0393-0440(96)00024-1
First order correction to the renormalization of the phase space lattice Hamiltonian
Ritchie J Kay and Michael Wilkinson Journal of Physics A: Mathematical and General 29 (7) 1515 (1996) https://doi.org/10.1088/0305-4470/29/7/021
Double Butterfly Spectrum for Two Interacting Particles in the Harper Model
Armelle Barelli, Jean Bellissard, Philippe Jacquod and Dima L. Shepelyansky Physical Review Letters 77 (23) 4752 (1996) https://doi.org/10.1103/PhysRevLett.77.4752
Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands
Ming-Che Chang and Qian Niu Physical Review B 53 (11) 7010 (1996) https://doi.org/10.1103/PhysRevB.53.7010
Energy spectrum of two-dimensional tight-binding electrons in a spatially varying magnetic field
G. Y. Oh and M. H. Lee Physical Review B 53 (3) 1225 (1996) https://doi.org/10.1103/PhysRevB.53.1225
Semiclassical Limits of the Spectrum of Harper's Equation
Michael Wilkinson and Ritchie J. Kay Physical Review Letters 76 (11) 1896 (1996) https://doi.org/10.1103/PhysRevLett.76.1896
The lightcone SUq(2) quantum algebra as dynamical symmetry of the Azbel-Hofstadter problem
G.G. Athanasiu and E.G. Floratos Physics Letters B 352 (1-2) 105 (1995) https://doi.org/10.1016/0370-2693(95)00464-V
Random walk and chaos of the spectrum. Solvable model
Leonid Malozemov Chaos, Solitons & Fractals 5 (6) 895 (1995) https://doi.org/10.1016/0960-0779(94)00221-B
Total bandwidth for Harper equation: correction to renormalization analysis
Y Tan Journal of Physics A: Mathematical and General 28 (14) 4163 (1995) https://doi.org/10.1088/0305-4470/28/14/031
Generalized Wannier function and renormalization of Harper's equation
M Wilkinson Journal of Physics A: Mathematical and General 27 (24) 8123 (1994) https://doi.org/10.1088/0305-4470/27/24/021
Lattice magnetic walks
T Blum and Y Shapir Journal of Physics A: Mathematical and General 27 (2) 295 (1994) https://doi.org/10.1088/0305-4470/27/2/015
Coherent states in Finite Quantum Mechanics
G.G. Athanasiu and E.G. Floratos Nuclear Physics B 425 (1-2) 343 (1994) https://doi.org/10.1016/0550-3213(94)90184-8
Lipshitz continuity of gap boundaries for Hofstadter-like spectra
J. Bellissard Communications in Mathematical Physics 160 (3) 599 (1994) https://doi.org/10.1007/BF02173432
Transition to Chaos in Classical and Quantum Mechanics
Jean Bellissard Lecture Notes in Mathematics, Transition to Chaos in Classical and Quantum Mechanics 1589 1 (1994) https://doi.org/10.1007/BFb0074074
Flux Phase of the Half-Filled Band
Elliott H. Lieb Physical Review Letters 73 (16) 2158 (1994) https://doi.org/10.1103/PhysRevLett.73.2158
Can one hear the shape of a group?
Alain Valette Rendiconti del Seminario Matematico e Fisico di Milano 64 (1) 31 (1994) https://doi.org/10.1007/BF02925188
Toda lattice invariants and the Harper's Hamiltonian thermodynamics
S A Ktitorov and L Jastrabik Journal of Physics A: Mathematical and General 27 (16) 5687 (1994) https://doi.org/10.1088/0305-4470/27/16/031
Statistical Mechanics
Elliott H. Lieb and Michael Loss Statistical Mechanics 457 (1993) https://doi.org/10.1007/978-3-662-10018-9_28
Semiclassical analysis of Harper-like models
Armelle Barelli and Robert Fleckinger Physical Review B 46 (18) 11559 (1992) https://doi.org/10.1103/PhysRevB.46.11559
Total energy for fermions on a two-dimensional lattice in a magnetic field
Yong Tan and D. J. Thouless Physical Review B 46 (5) 2985 (1992) https://doi.org/10.1103/PhysRevB.46.2985
Quantum algebra nearq=1 and a deformed symplectic structure
Shinji Iida and Hiroshi Kuratsuji Physical Review Letters 69 (13) 1833 (1992) https://doi.org/10.1103/PhysRevLett.69.1833
From Number Theory to Physics
Jean Bellissard From Number Theory to Physics 538 (1992) https://doi.org/10.1007/978-3-662-02838-4_12
Analysis of the spectrum of a particle on a triangular lattice with two magnetic fluxes by algebraic and numerical methods
J Bellissard, C Kreft and R Seiler Journal of Physics A: Mathematical and General 24 (10) 2329 (1991) https://doi.org/10.1088/0305-4470/24/10/019
Response functions of a quantum fractal system: The Wannier-Azbel-Hofstadter problem
B. Douçot and P. C. E. Stamp Physical Review Letters 66 (19) 2503 (1991) https://doi.org/10.1103/PhysRevLett.66.2503