Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

An efficient, multi-scale neighbourhood index to quantify wildfire likelihood

Douglas A. G. Radford, Holger R. Maier, Hedwig van Delden, Aaron C. Zecchin and Amelie Jeanneau
International Journal of Wildland Fire 33 (5) (2024)
https://doi.org/10.1071/WF23055

Feedback Mechanisms for Self-Organization to the Edge of a Phase Transition

Victor Buendía, Serena di Santo, Juan A. Bonachela and Miguel A. Muñoz
Frontiers in Physics 8 (2020)
https://doi.org/10.3389/fphy.2020.00333

Critical properties of deterministic and stochastic sandpile models on two-dimensional percolation backbone

Himangsu Bhaumik and S.B. Santra
Physica A: Statistical Mechanics and its Applications 548 124318 (2020)
https://doi.org/10.1016/j.physa.2020.124318

Bak-Tang-Wiesenfeld model in the upper critical dimension: Induced criticality in lower-dimensional subsystems

H. Dashti-Naserabadi and M. N. Najafi
Physical Review E 96 (4) (2017)
https://doi.org/10.1103/PhysRevE.96.042115

25 Years of Self-organized Criticality: Concepts and Controversies

Nicholas W. Watkins, Gunnar Pruessner, Sandra C. Chapman, Norma B. Crosby and Henrik J. Jensen
Space Science Reviews 198 (1-4) 3 (2016)
https://doi.org/10.1007/s11214-015-0155-x

Global fire size distribution is driven by human impact and climate

Stijn Hantson, Salvador Pueyo and Emilio Chuvieco
Global Ecology and Biogeography 24 (1) 77 (2015)
https://doi.org/10.1111/geb.12246

Crossover from rotational to stochastic sandpile universality in the random rotational sandpile model

Himangsu Bhaumik, Jahir Abbas Ahmed and S. B. Santra
Physical Review E 90 (6) (2014)
https://doi.org/10.1103/PhysRevE.90.062136

Height probabilities in the Abelian sandpile model on the generalized finite Bethe lattice

Haiyan Chen and Fuji Zhang
Journal of Mathematical Physics 54 (8) (2013)
https://doi.org/10.1063/1.4817089

Exact integration of height probabilities in the Abelian Sandpile model

Sergio Caracciolo and Andrea Sportiello
Journal of Statistical Mechanics: Theory and Experiment 2012 (09) P09013 (2012)
https://doi.org/10.1088/1742-5468/2012/09/P09013

The Abelian sandpile model on the honeycomb lattice

N Azimi-Tafreshi, H Dashti-Naserabadi, S Moghimi-Araghi and P Ruelle
Journal of Statistical Mechanics: Theory and Experiment 2010 (02) P02004 (2010)
https://doi.org/10.1088/1742-5468/2010/02/P02004

A dissipative deterministic BTW model with an activation scenario of strong events

A. B. Shapoval and M. G. Shnirman
Izvestiya, Physics of the Solid Earth 45 (5) 414 (2009)
https://doi.org/10.1134/S106935130905005X

Prediction efficiency in an avalanche model for different target events

A. B. Shapoval and M. G. Shnirman
Izvestiya, Physics of the Solid Earth 44 (6) 495 (2008)
https://doi.org/10.1134/S1069351308060050

Characteristics of deterministic and stochastic sandpile models in a rotational sandpile model

S. B. Santra, S. Ranjita Chanu and Debabrata Deb
Physical Review E 75 (4) (2007)
https://doi.org/10.1103/PhysRevE.75.041122

Sticky grains do not change the universality class of isotropic sandpiles

Juan A. Bonachela, José J. Ramasco, Hugues Chaté, Ivan Dornic and Miguel A. Muñoz
Physical Review E 74 (5) (2006)
https://doi.org/10.1103/PhysRevE.74.050102

CROSSOVER PHENOMENON AND UNIVERSALITY: FROM RANDOM WALK TO DETERMINISTIC SAND-PILES THROUGH RANDOM SAND-PILES

A. B. SHAPOVAL and M. G. SHNIRMAN
International Journal of Modern Physics C 16 (12) 1893 (2005)
https://doi.org/10.1142/S0129183105008412

Phase transition and critical behavior in a model of organized criticality

M. Biskup, Ph. Blanchard, L. Chayes, D. Gandolfo and T. Krüger
Probability Theory and Related Fields 128 (1) 1 (2004)
https://doi.org/10.1007/s00440-003-0269-z

Self-organized criticality within fractional Lorenz scheme

Alexander I. Olemskoi, Alexei V. Khomenko and Dmitrii O. Kharchenko
Physica A: Statistical Mechanics and its Applications 323 263 (2003)
https://doi.org/10.1016/S0378-4371(02)01991-X

QUANTUM FIELD THEORY RENORMALIZATION GROUP APPROACH TO SELF-ORGANIZED CRITICAL MODELS: THE CASE OF RANDOM BOUNDARIES

D. VOLCHENKOV, PH. BLANCHARD and B. CESSAC
International Journal of Modern Physics B 16 (08) 1171 (2002)
https://doi.org/10.1142/S0217979202010130

Continuously varying critical exponents in a sandpile model with internal disorder

A. Benyoussef, A. El Kenz, M. Khfifi and M. Loulidi
Physical Review E 66 (4) (2002)
https://doi.org/10.1103/PhysRevE.66.041302

Self-organized random walks and stochastic sandpile: from linear to branched avalanches

S.S Manna and A.L Stella
Physica A: Statistical Mechanics and its Applications 316 (1-4) 135 (2002)
https://doi.org/10.1016/S0378-4371(02)01497-8

Evidence for universality within the classes of deterministic and stochastic sandpile models

Ofer Biham, Erel Milshtein and Ofer Malcai
Physical Review E 63 (6) (2001)
https://doi.org/10.1103/PhysRevE.63.061309

Mechanisms of avalanche dynamics and forms of scaling in sandpiles

Attilio L Stella and Mario De Menech
Physica A: Statistical Mechanics and its Applications 295 (1-2) 101 (2001)
https://doi.org/10.1016/S0378-4371(01)00060-7

Precursors of catastrophe in the Bak-Tang-Wiesenfeld, Manna, and random-fiber-bundle models of failure

Srutarshi Pradhan and Bikas K. Chakrabarti
Physical Review E 65 (1) (2001)
https://doi.org/10.1103/PhysRevE.65.016113

Scaling of waves in the Bak-Tang-Wiesenfeld sandpile model

D. V. Ktitarev, S. Lübeck, P. Grassberger and V. B. Priezzhev
Physical Review E 61 (1) 81 (2000)
https://doi.org/10.1103/PhysRevE.61.81

Absorbing-state phase transitions in fixed-energy sandpiles

Alessandro Vespignani, Ronald Dickman, Miguel A. Muñoz and Stefano Zapperi
Physical Review E 62 (4) 4564 (2000)
https://doi.org/10.1103/PhysRevE.62.4564

Inversion Symmetry and Exact Critical Exponents of Dissipating Waves in the Sandpile Model

Chin-Kun Hu, E. V. Ivashkevich, Chai-Yu Lin and V. B. Priezzhev
Physical Review Letters 85 (19) 4048 (2000)
https://doi.org/10.1103/PhysRevLett.85.4048

Multifractal Scaling in the Bak-Tang-Wiesenfeld Sandpile and Edge Events

Claudio Tebaldi, Mario De Menech and Attilio L. Stella
Physical Review Letters 83 (19) 3952 (1999)
https://doi.org/10.1103/PhysRevLett.83.3952

Dynamical real space renormalization group applied to sandpile models

Eugene V. Ivashkevich, Alexander M. Povolotsky, Alessandro Vespignani and Stefano Zapperi
Physical Review E 60 (2) 1239 (1999)
https://doi.org/10.1103/PhysRevE.60.1239

Mean-field behavior of the sandpile model below the upper critical dimension

Alessandro Chessa, Enzo Marinari, Alessandro Vespignani and Stefano Zapperi
Physical Review E 57 (6) R6241 (1998)
https://doi.org/10.1103/PhysRevE.57.R6241

Universality classes in isotropic, Abelian, and non-Abelian sandpile models

Erel Milshtein, Ofer Biham and Sorin Solomon
Physical Review E 58 (1) 303 (1998)
https://doi.org/10.1103/PhysRevE.58.303

Dynamically Driven Renormalization Group Applied to Self-Organized Critical Systems

A. Vespignani, S. Zapperi and V. Loreto
International Journal of Modern Physics B 12 (12n13) 1407 (1998)
https://doi.org/10.1142/S021797929800082X

Self-organized criticality as an absorbing-state phase transition

Ronald Dickman, Alessandro Vespignani and Stefano Zapperi
Physical Review E 57 (5) 5095 (1998)
https://doi.org/10.1103/PhysRevE.57.5095

Dynamically driven renormalization group

Alessandro Vespignani, Stefano Zapperi and Vittorio Loreto
Journal of Statistical Physics 88 (1-2) 47 (1997)
https://doi.org/10.1007/BF02508464

n-State Exclusive Diffusion Models for Avalanche Processes Showing Self-Organized Criticality

Hirotsugu Kobayashi and Makoto Katori
Journal of the Physical Society of Japan 66 (8) 2367 (1997)
https://doi.org/10.1143/JPSJ.66.2367

Cluster, backbone, and elastic backbone structures of the multiple invasion percolation

Roberto N. Onody and Reginaldo A. Zara
Physical Review E 56 (3) 2548 (1997)
https://doi.org/10.1103/PhysRevE.56.2548

Sandpile model on the Sierpinski gasket fractal

Brigita Kutnjak-Urbanc, Stefano Zapperi, Sava Milošević and H. Eugene Stanley
Physical Review E 54 (1) 272 (1996)
https://doi.org/10.1103/PhysRevE.54.272

Formation of Avalanches and Critical Exponents in an Abelian Sandpile Model

V. B. Priezzhev, D. V. Ktitarev and E. V. Ivashkevich
Physical Review Letters 76 (12) 2093 (1996)
https://doi.org/10.1103/PhysRevLett.76.2093