Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme strong>CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Citations de cet article :

Response : Computing with Neural Networks

John J. Hopfield and David W. Tank
Science 235 (4793) 1228 (1987)
DOI: 10.1126/science.235.4793.1228
Voir cet article

Inhomogeneities in Heteroassociative Memories with Linear Learning Rules

David C. Sterratt and David Willshaw
Neural Computation 20 (2) 311 (2008)
DOI: 10.1162/neco.2007.08-06-301
Voir cet article

Layered feed-forward neural network with exactly soluble dynamics

Ronny Meir and Eytan Domany
Physical Review A 37 (2) 608 (1988)
DOI: 10.1103/PhysRevA.37.608
Voir cet article

Potts-glass models of neural networks

Ido Kanter
Physical Review A 37 (7) 2739 (1988)
DOI: 10.1103/PhysRevA.37.2739
Voir cet article

Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization

Michael Biehl, Fthi Abadi, Christina Göpfert and Barbara Hammer
Advances in Intelligent Systems and Computing, Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization 976 210 (2020)
DOI: 10.1007/978-3-030-19642-4_21
Voir cet article

Introduction to neural network models

B. Derrida
Nuclear Physics B - Proceedings Supplements 4 673 (1988)
DOI: 10.1016/0920-5632(88)90175-2
Voir cet article

Soft-bound Synaptic Plasticity Increases Storage Capacity

Mark C. W. van Rossum, Maria Shippi, Adam B. Barrett and Peter E. Latham
PLoS Computational Biology 8 (12) e1002836 (2012)
DOI: 10.1371/journal.pcbi.1002836
Voir cet article

Retrieval Properties of Neural Networks with Infinitely Many Marked Patterns

S Nicolis
Europhysics Letters (EPL) 12 (7) 583 (1990)
DOI: 10.1209/0295-5075/12/7/002
Voir cet article

Paramagnetic unlearning in neural network models

Kazuo Nokura
Physical Review E 54 (5) 5571 (1996)
DOI: 10.1103/PhysRevE.54.5571
Voir cet article

Maximum Storage Capacity in Neural Networks

E Gardner
Europhysics Letters (EPL) 4 (4) 481 (1987)
DOI: 10.1209/0295-5075/4/4/016
Voir cet article

Information storage in neural networks with low levels of activity

Daniel J. Amit, Hanoch Gutfreund and H. Sompolinsky
Physical Review A 35 (5) 2293 (1987)
DOI: 10.1103/PhysRevA.35.2293
Voir cet article

Domain Theory in Learning Processes

A. Edalat
Electronic Notes in Theoretical Computer Science 1 114 (1995)
DOI: 10.1016/S1571-0661(04)80007-0
Voir cet article

Associative Memory for Online Learning in Noisy Environments Using Self-Organizing Incremental Neural Network

A. Sudo, A. Sato and O. Hasegawa
IEEE Transactions on Neural Networks 20 (6) 964 (2009)
DOI: 10.1109/TNN.2009.2014374
Voir cet article

Principal component analysis for fermionic critical points

Natanael C. Costa, Wenjian Hu, Z. J. Bai, Richard T. Scalettar and Rajiv R. P. Singh
Physical Review B 96 (19) (2017)
DOI: 10.1103/PhysRevB.96.195138
Voir cet article

Recall of old and recent information

Vipin Srivastava, Meena Vipin and Enzo Granato
Network: Computation in Neural Systems 9 (2) 159 (1998)
DOI: 10.1088/0954-898X_9_2_001
Voir cet article

A memory model with novel behaviour in sequential learning

P E Kahn, K Y M Wong and D Sherrington
Network: Computation in Neural Systems 6 (3) 415 (1995)
DOI: 10.1088/0954-898X_6_3_007
Voir cet article

Constraints on learning in dynamic synapses

Daniel J Amit and Stefano Fusi
Network: Computation in Neural Systems 3 (4) 443 (1992)
DOI: 10.1088/0954-898X_3_4_008
Voir cet article

Effects of temporary synaptic strengthening and residual cell potential in the retrieval of patterns

Tohru Nakano and Osamu Moriyama
Network: Computation in Neural Systems 5 (2) 229 (1994)
DOI: 10.1088/0954-898X_5_2_007
Voir cet article

Learning in neural network memories

L F Abbott
Network: Computation in Neural Systems 1 (1) 105 (1990)
DOI: 10.1088/0954-898X_1_1_008
Voir cet article

Neural network models of list learning

Neil Burgess, J L Shapiro and M A Moore
Network: Computation in Neural Systems 2 (4) 399 (1991)
DOI: 10.1088/0954-898X_2_4_005
Voir cet article

Memory maintenance in neural networks

S Shinomoto
Journal of Physics A: Mathematical and General 20 (18) L1305 (1987)
DOI: 10.1088/0305-4470/20/18/015
Voir cet article

Categorization in a Hopfield network trained with weighted examples: Extensive number of concepts

Rogério L. Costa and Alba Theumann
Physical Review E 61 (5) 4860 (2000)
DOI: 10.1103/PhysRevE.61.4860
Voir cet article

Spin glass model for a neural network : associative memories stored with unequal weights

L. Viana
Journal de Physique 49 (2) 167 (1988)
DOI: 10.1051/jphys:01988004902016700
Voir cet article

Computational modelling of memory retention from synapse to behaviour

Mark C W van Rossum and Maria Shippi
Journal of Statistical Mechanics: Theory and Experiment 2013 (03) P03007 (2013)
DOI: 10.1088/1742-5468/2013/03/P03007
Voir cet article

Spin glasses and neural networks

Nestor Parga
Nuclear Physics B - Proceedings Supplements 10 (1) 332 (1989)
DOI: 10.1016/0920-5632(89)90071-6
Voir cet article

The statistical mechanics of learning a rule

Timothy L. H. Watkin, Albrecht Rau and Michael Biehl
Reviews of Modern Physics 65 (2) 499 (1993)
DOI: 10.1103/RevModPhys.65.499
Voir cet article

A property of neural networks of associative memory with replacing units

Akira Date and Koji Kurata
Artificial Life and Robotics 12 (1-2) 291 (2008)
DOI: 10.1007/s10015-007-0484-2
Voir cet article

Neural network with hierarchical clustering near saturation

M A Pires Idiart and A Theumann
Journal of Physics A: Mathematical and General 25 (4) 779 (1992)
DOI: 10.1088/0305-4470/25/4/017
Voir cet article

Hierarchical associative networks

C Cortes, A Krogh and J A Hertz
Journal of Physics A: Mathematical and General 20 (13) 4449 (1987)
DOI: 10.1088/0305-4470/20/13/044
Voir cet article

Categorization in a Hopfield network trained with weighted examples. (I). Finite number of concepts

Rogério L. Costa and Alba Theumann
Physica A: Statistical Mechanics and its Applications 268 (3-4) 499 (1999)
DOI: 10.1016/S0378-4371(99)00043-6
Voir cet article

Embedding Responses in Spontaneous Neural Activity Shaped through Sequential Learning

Tomoki Kurikawa, Kunihiko Kaneko and Tim Behrens
PLoS Computational Biology 9 (3) e1002943 (2013)
DOI: 10.1371/journal.pcbi.1002943
Voir cet article

Neuronal models of cognitive functions

Jean-Pierre Changeux and Stanislas Dehaene
Cognition 33 (1-2) 63 (1989)
DOI: 10.1016/0010-0277(89)90006-1
Voir cet article

A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks

Alireza Alemi, Carlo Baldassi, Nicolas Brunel, Riccardo Zecchina and Peter E. Latham
PLOS Computational Biology 11 (8) e1004439 (2015)
DOI: 10.1371/journal.pcbi.1004439
Voir cet article

Properties of Hopfield model with the zero-order synaptic decay

Ryota Miyata, Toru Aonishi, Jun Tsuzurugi and Koji Kurata
Artificial Life and Robotics 17 (1) 163 (2012)
DOI: 10.1007/s10015-012-0033-5
Voir cet article

Memory capacity of neural networks learning within bounds

Mirta B. Gordon
Journal de Physique 48 (12) 2053 (1987)
DOI: 10.1051/jphys:0198700480120205300
Voir cet article

Neural networks as models of associative memories

N. Parga
Computer Physics Communications 55 (1) 77 (1989)
DOI: 10.1016/0010-4655(89)90065-9
Voir cet article

Multifractality in forgetful memories

U. Behn, J.L. van Hemmen, R. Kühn, A. Lange and V.A. Zagrebnov
Physica D: Nonlinear Phenomena 68 (3-4) 401 (1993)
DOI: 10.1016/0167-2789(93)90133-L
Voir cet article

Methods and Models in Neurophysics, École d' été de Physique des Houches Session LXXX

Nicolas Brunel
Les Houches, Methods and Models in Neurophysics, École d' été de Physique des Houches Session LXXX 80 407 (2005)
DOI: 10.1016/S0924-8099(05)80016-2
Voir cet article

Synaptic Scaling Enables Dynamically Distinct Short- and Long-Term Memory Formation

Christian Tetzlaff, Christoph Kolodziejski, Marc Timme, et al.
PLoS Computational Biology 9 (10) e1003307 (2013)
DOI: 10.1371/journal.pcbi.1003307
Voir cet article

Dynamics and statistical mechanics of the Hopfield model

A D Bruce, E J Gardner and D J Wallace
Journal of Physics A: Mathematical and General 20 (10) 2909 (1987)
DOI: 10.1088/0305-4470/20/10/035
Voir cet article

Forgetting Memories and Their Attractiveness

Enzo Marinari
Neural Computation 31 (3) 503 (2019)
DOI: 10.1162/neco_a_01162
Voir cet article

Stochastic neural networks with the weighted Hebb rule

Caren Marzban and Raju Viswanathan
Physics Letters A 191 (1-2) 127 (1994)
DOI: 10.1016/0375-9601(94)90570-3
Voir cet article

Neural networks as content addressable memories and learning machines

Roland Köberle
Computer Physics Communications 56 (1) 43 (1989)
DOI: 10.1016/0010-4655(89)90051-9
Voir cet article

Iterated learning in a layered feed-forward neural network

Ronny Meir and Eytan Domany
Physical Review A 37 (7) 2660 (1988)
DOI: 10.1103/PhysRevA.37.2660
Voir cet article

Time scales of memory, learning, and plasticity

Christian Tetzlaff, Christoph Kolodziejski, Irene Markelic and Florentin Wörgötter
Biological Cybernetics 106 (11-12) 715 (2012)
DOI: 10.1007/s00422-012-0529-z
Voir cet article

Self-consistent signal-to-noise analysis of Hopfield model with unit replacement

Toru Aonishi, Yasunao Komatsu and Koji Kurata
Neural Networks 23 (10) 1180 (2010)
DOI: 10.1016/j.neunet.2010.06.006
Voir cet article

Principal component analysis of the magnetic transition in the three-dimensional Fermi-Hubbard model

Ehsan Khatami
Journal of Physics: Conference Series 1290 (1) 012006 (2019)
DOI: 10.1088/1742-6596/1290/1/012006
Voir cet article

Attractor Dynamics in Networks with Learning Rules Inferred from In Vivo Data

Ulises Pereira and Nicolas Brunel
Neuron 99 (1) 227 (2018)
DOI: 10.1016/j.neuron.2018.05.038
Voir cet article

A Short-Term Neural Network Memory

Robert J. T. Morris and Wing Shing Wong
SIAM Journal on Computing 17 (6) 1103 (1988)
DOI: 10.1137/0217071
Voir cet article

Enhancing the learning of a finite number of patterns in neural networks

J F Fontanari and R Koberle
Journal of Physics A: Mathematical and General 21 (4) L253 (1988)
DOI: 10.1088/0305-4470/21/4/012
Voir cet article

Statistical Mechanics of On-Line Learning Under Concept Drift

Michiel Straat, Fthi Abadi, Christina Göpfert, Barbara Hammer and Michael Biehl
Entropy 20 (10) 775 (2018)
DOI: 10.3390/e20100775
Voir cet article

ICANN ’93

Shotaro Akaho
ICANN ’93 707 (1993)
DOI: 10.1007/978-1-4471-2063-6_198
Voir cet article

Recall of old and recent information

Vipin Srivastava, Meena Vipin and Enzo Granato
Network: Computation in Neural Systems 9 (2) 159 (1998)
DOI: 10.1088/0954-898X/9/2/001
Voir cet article

Storing patterns in a spin-glass model of neural networks nears saturation

D Grensing, R Kuhn and J L van Hemmen
Journal of Physics A: Mathematical and General 20 (10) 2935 (1987)
DOI: 10.1088/0305-4470/20/10/036
Voir cet article

Relative stability in the dynamics of a two-pattern neural net

F Pazmandi and T Geszti
Journal of Physics A: Mathematical and General 22 (23) 5117 (1989)
DOI: 10.1088/0305-4470/22/23/016
Voir cet article

Effects of temporary synaptic strengthening and residual cell potential in the retrieval of patterns

Tohru Nakano and Osamu Moriyama
Network: Computation in Neural Systems 5 (2) 229 (1994)
DOI: 10.1088/0954-898X/5/2/007
Voir cet article

Constraints on learning in dynamic synapses

Daniel Amit and Stefano Fusi
Network: Computation in Neural Systems 3 (4) 443 (1992)
DOI: 10.1088/0954-898X/3/4/008
Voir cet article

Neural network models of list learning

Neil Burgess, J Shapiro and M Moore
Network: Computation in Neural Systems 2 (4) 399 (1991)
DOI: 10.1088/0954-898X/2/4/005
Voir cet article

Learning in neural network memories

L Abbott
Network: Computation in Neural Systems 1 (1) 105 (1990)
DOI: 10.1088/0954-898X/1/1/008
Voir cet article

Selective pattern recall in neural networks by chemical modulation

A C C Coolen and A J Noest
Journal of Physics A: Mathematical and General 23 (4) 575 (1990)
DOI: 10.1088/0305-4470/23/4/026
Voir cet article

Unsupervised dynamic learning in layered neural networks

H J J Jonker and A C C Coolen
Journal of Physics A: Mathematical and General 24 (17) 4219 (1991)
DOI: 10.1088/0305-4470/24/17/032
Voir cet article

Learning drifting concepts with neural networks

M Biehl and H Schwarze
Journal of Physics A: Mathematical and General 26 (11) 2651 (1993)
DOI: 10.1088/0305-4470/26/11/014
Voir cet article

Storing extensively many weighted patterns in a saturated neural network

J L van Hemmen and V A Zagrebnov
Journal of Physics A: Mathematical and General 20 (12) 3989 (1987)
DOI: 10.1088/0305-4470/20/12/043
Voir cet article

Optimal storage properties of neural network models

E Gardner and B Derrida
Journal of Physics A: Mathematical and General 21 (1) 271 (1988)
DOI: 10.1088/0305-4470/21/1/031
Voir cet article

Content-addressability and learning in neural networks

B M Forrest
Journal of Physics A: Mathematical and General 21 (1) 245 (1988)
DOI: 10.1088/0305-4470/21/1/029
Voir cet article

A memory model with novel behaviour in sequential learning

P Kahn, K Wong and D Sherrington
Network: Computation in Neural Systems 6 (3) 415 (1995)
DOI: 10.1088/0954-898X/6/3/007
Voir cet article

The space of interactions in neural network models

E Gardner
Journal of Physics A: Mathematical and General 21 (1) 257 (1988)
DOI: 10.1088/0305-4470/21/1/030
Voir cet article

A neural network model of working memory exhibiting primacy and recency

K Y M Wong, P E Kahn and D Sherrington
Journal of Physics A: Mathematical and General 24 (5) 1119 (1991)
DOI: 10.1088/0305-4470/24/5/025
Voir cet article

Learning and forgetting on asymmetric, diluted neural networks

B. Derrida and J. P. Nadal
Journal of Statistical Physics 49 (5-6) 993 (1987)
DOI: 10.1007/BF01017556
Voir cet article

Nonlinear neural networks. II. Information processing

J. L. van Hemmen, D. Grensing, A. Huber and R. Kühn
Journal of Statistical Physics 50 (1-2) 259 (1988)
DOI: 10.1007/BF01022995
Voir cet article

Information processing in three-state neural networks

C. Meunier, D. Hansel and A. Verga
Journal of Statistical Physics 55 (5-6) 859 (1989)
DOI: 10.1007/BF01041070
Voir cet article

Extensions of a solvable feed forward neural network

Ronny Meir
Journal de Physique 49 (2) 201 (1988)
DOI: 10.1051/jphys:01988004902020100
Voir cet article

On-Line Learning of a Time-Dependent Rule

M Biehl and H Schwarze
Europhysics Letters (EPL) 20 (8) 733 (1992)
DOI: 10.1209/0295-5075/20/8/012
Voir cet article

Statistical Mechanics of Neural Networks

B. Schürmann, J. Hollatz and U. Ramacher
Lecture Notes in Physics, Statistical Mechanics of Neural Networks 368 49 (1990)
DOI: 10.1007/3540532676_40
Voir cet article

Statistical Mechanics of Neural Networks

Stam Nicolis
Lecture Notes in Physics, Statistical Mechanics of Neural Networks 368 155 (1990)
DOI: 10.1007/3540532676_47
Voir cet article

Glauber dynamics of the Little-Hopfield model

H. Rieger, M. Schreckenberg and J. Zittartz
Zeitschrift f�r Physik B Condensed Matter 72 (4) 523 (1988)
DOI: 10.1007/BF01314534
Voir cet article

Heidelberg Colloquium on Glassy Dynamics

H. Sompolinsky
Lecture Notes in Physics, Heidelberg Colloquium on Glassy Dynamics 275 485 (1987)
DOI: 10.1007/BFb0057531
Voir cet article

Heidelberg Colloquium on Glassy Dynamics

G. Toulouse
Lecture Notes in Physics, Heidelberg Colloquium on Glassy Dynamics 275 569 (1987)
DOI: 10.1007/BFb0057535
Voir cet article

Heidelberg Colloquium on Glassy Dynamics

Daniel J. Amit
Lecture Notes in Physics, Heidelberg Colloquium on Glassy Dynamics 275 429 (1987)
DOI: 10.1007/BFb0057530
Voir cet article

Weinan Sun, Madhu Advani, Nelson Spruston, Andrew Saxe and James E. Fitzgerald
(2021)
DOI: 10.1101/2021.10.13.463791
Voir cet article

External Stimuli on Neural Networks: Analytical and Numerical Approaches

Evaldo M. F. Curado, Nilo B. Melgar and Fernando D. Nobre
Entropy 23 (8) 1034 (2021)
DOI: 10.3390/e23081034
Voir cet article

Dynamic Interactions in Neural Networks: Models and Data

Shigeru Shinomoto
Research Notes in Neural Computing, Dynamic Interactions in Neural Networks: Models and Data 1 73 (1989)
DOI: 10.1007/978-1-4612-4536-0_5
Voir cet article

Models of Neural Networks I

J. Leo van Hemmen and Reimer Kühn
Physics of Neural Networks, Models of Neural Networks I 1 (1995)
DOI: 10.1007/978-3-642-79814-6_1
Voir cet article

Models of Neural Networks

J. Leo van Hemmen and Reimer Kühn
Physics of Neural Networks, Models of Neural Networks 1 (1991)
DOI: 10.1007/978-3-642-97171-6_1
Voir cet article

Time-Dependent Effects in Disordered Materials

Gérard Toulouse
Time-Dependent Effects in Disordered Materials 359 (1987)
DOI: 10.1007/978-1-4684-7476-3_38
Voir cet article

Quality Solution of Logic Programming in Hopfield Neural Network

M S M Kasihmuddin, M A Mansor, S Alzaeemi, M F M Basir and S Sathasivam
Journal of Physics: Conference Series 1366 (1) 012094 (2019)
DOI: 10.1088/1742-6596/1366/1/012094
Voir cet article

Nimrod Shaham, Jay Chandra, Gabriel Kreiman and Haim Sompolinsky
(2021)
DOI: 10.1101/2021.08.24.457446
Voir cet article

Learning Networks of Neurons with Boolean Logic

S Patarnello and P Carnevali
Europhysics Letters (EPL) 4 (4) 503 (1987)
DOI: 10.1209/0295-5075/4/4/020
Voir cet article

Stochastic Dynamics of a Layered Neural Network; Exact Solution

R Meir and E Domany
Europhysics Letters (EPL) 4 (6) 645 (1987)
DOI: 10.1209/0295-5075/4/6/002
Voir cet article

Oskar H Schnaack, Luca Peliti and Armita Nourmohammad
(2021)
DOI: 10.1101/2021.10.27.466120
Voir cet article

X. Li and W.S. Wong
4 2454 (1994)
DOI: 10.1109/ICNN.1994.374605
Voir cet article

A. Ballarin, S. Gervasi, F. Giancarli and F. Cecere
593 (2000)
DOI: 10.1109/IJCNN.2000.861381
Voir cet article

Morris, Rubin and Wong
199 (1988)
DOI: 10.1109/ICNN.1988.23848
Voir cet article

A. Kuh and T. Petsche
2 971 (1990)
DOI: 10.1109/ACSSC.1990.523482
Voir cet article

Supervised learning in the presence of concept drift: a modelling framework

M. Straat, F. Abadi, Z. Kan, C. Göpfert, B. Hammer and M. Biehl
Neural Computing and Applications 34 (1) 101 (2022)
DOI: 10.1007/s00521-021-06035-1
Voir cet article