Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Some thermodynamical peculiarities at the Lifshitz topological transitions in trigonally warped AB-stacked bilayer graphene and graphite near K points

V. N. Davydov
Philosophical Magazine 101 (7) 867 (2021)
https://doi.org/10.1080/14786435.2020.1869341

The recurrent relations for the electronic band structure of the multilayer graphene

V. N. Davydov
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2220) 20180439 (2018)
https://doi.org/10.1098/rspa.2018.0439

Optical contrast spectra studies for determining thickness of stage-1 graphene-FeCl3 intercalation compounds

Wen-Peng Han, Qiao-Qiao Li, Yan Lu, et al.
AIP Advances 6 (7) (2016)
https://doi.org/10.1063/1.4960211

The selection rule of graphene in a composite magnetic field

Y. C. Ou, Y. H. Chiu, P. H. Yang and M. F. Lin
Optics Express 22 (7) 7473 (2014)
https://doi.org/10.1364/OE.22.007473

Microscopic theory of the optical properties of colloidal graphene quantum dots

Isil Ozfidan, Marek Korkusinski, A. Devrim Güçlü, John A. McGuire and Pawel Hawrylak
Physical Review B 89 (8) (2014)
https://doi.org/10.1103/PhysRevB.89.085310

Resonant Raman scattering of graphite intercalation compounds KC8, KC24, and KC36

Yu Wang, Pascal Puech, Iann Gerber and Alain Pénicaud
Journal of Raman Spectroscopy 45 (3) 219 (2014)
https://doi.org/10.1002/jrs.4445

Electric modulation effect on magneto-optical spectrum of monolayer graphene

Y.C. Ou, Y.H. Chiu, J.M. Lu, W.P. Su and M.F. Lin
Computer Physics Communications 184 (8) 1821 (2013)
https://doi.org/10.1016/j.cpc.2013.03.001

Manifestation of Charged and Strained Graphene Layers in the Raman Response of Graphite Intercalation Compounds

Julio C. Chacón-Torres, Ludger Wirtz and Thomas Pichler
ACS Nano 7 (10) 9249 (2013)
https://doi.org/10.1021/nn403885k

Potential dependence of SERS spectra of reduced graphene oxide adsorbed on self-assembled monolayer at gold electrode

Ieva Matulaitienė, Jurgis Barkauskas, Romualdas Trusovas, et al.
Chemical Physics Letters 590 141 (2013)
https://doi.org/10.1016/j.cplett.2013.10.068

Effects of spatial dispersion on the Casimir force between graphene sheets

D. Drosdoff, A. D. Phan, L. M. Woods, I. V. Bondarev and J. F. Dobson
The European Physical Journal B 85 (11) (2012)
https://doi.org/10.1140/epjb/e2012-30741-6

Consistent theoretical model for the description of the neutron-rich fission product yields

V. A. Rubchenya and J. Äystö
The European Physical Journal A 48 (4) 44 (2012)
https://doi.org/10.1140/epja/i2012-12044-3

Electronic and optical properties of semiconductor and graphene quantum dots

Wei-dong Sheng, Marek Korkusinski, Alev Devrim Güçlü, et al.
Frontiers of Physics 7 (3) 328 (2012)
https://doi.org/10.1007/s11467-011-0200-5

Three decades of research using IGISOL technique at the University of Jyväskylä

V. A. Rubchenya and J. Äystö
Three decades of research using IGISOL technique at the University of Jyväskylä 113 (2012)
https://doi.org/10.1007/978-94-007-5555-0_7

Electronic properties of monolayer graphene in the presence of the uniform magnetic and modulated electric fields

Y.C. Ou, Y.H. Chiu and M.F. Lin
Diamond and Related Materials 19 (5-6) 604 (2010)
https://doi.org/10.1016/j.diamond.2010.01.017

Raman Enhancement on Graphene: Adsorbed and Intercalated Molecular Species

Naeyoung Jung, Andrew C. Crowther, Namdong Kim, Philip Kim and Louis Brus
ACS Nano 4 (11) 7005 (2010)
https://doi.org/10.1021/nn102227u

Angle-resolved photoemission study of the graphite intercalation compoundKC8: A key to graphene

A. Grüneis, C. Attaccalite, A. Rubio, et al.
Physical Review B 80 (7) (2009)
https://doi.org/10.1103/PhysRevB.80.075431

Carbons for Electrochemical Energy Storage and Conversion Systems

Toshiaki Enoki
Advanced Materials and Technologies, Carbons for Electrochemical Energy Storage and Conversion Systems 20091238 221 (2009)
https://doi.org/10.1201/9781420055405-c6

Quasiparticles for a quantum dot array in graphene and the associated magnetoplasmons

Oleg L. Berman, Godfrey Gumbs and P. M. Echenique
Physical Review B 79 (7) (2009)
https://doi.org/10.1103/PhysRevB.79.075418

Effect of electron-electron interaction on the Fermi surface topology of doped graphene

R. Roldán, M. P. López-Sancho and F. Guinea
Physical Review B 77 (11) (2008)
https://doi.org/10.1103/PhysRevB.77.115410

Low-frequency magneto-optical excitations of a graphene monolayer: Peierls tight-binding model and gradient approximation calculation

Y. H. Chiu, J. H. Ho, C. P. Chang, D. S. Chuu and M. F. Lin
Physical Review B 78 (24) (2008)
https://doi.org/10.1103/PhysRevB.78.245411

Electron energy loss spectra of finite carbon nanotubes

R. B. Chen, C. P. Chang, C. H. Lee and M. F. Lin
Journal of Applied Physics 101 (11) 114305 (2007)
https://doi.org/10.1063/1.2737627

Deformation effect on electronic and optical properties of nanographite ribbons

C. P. Chang, B. R. Wu, R. B. Chen and M. F. Lin
Journal of Applied Physics 101 (6) 063506 (2007)
https://doi.org/10.1063/1.2710761

Electronic structures of HOPG and stage-2 IBr-GIC studied by angle resolved photoemission

H. Negishi, S. Negishi, K. Shimada, et al.
Journal of Physics and Chemistry of Solids 67 (5-6) 1145 (2006)
https://doi.org/10.1016/j.jpcs.2006.01.037

Hartree-Fock-Slater Method for Materials Science

Tomohiko Ishii, Masahiro Yamashita, Rika Sekine and Toshiaki Enoki
Springer Series in Materials Science, Hartree-Fock-Slater Method for Materials Science 84 147 (2006)
https://doi.org/10.1007/3-540-31297-8_7

Electronic properties and superconductivity of low-dimensional carbon structures

V. A. Kulbachinskiı̆
Low Temperature Physics 30 (11) 826 (2004)
https://doi.org/10.1063/1.1819856

Optical Spectra of AB- and AA-Stacked Nanographite Ribbons

C. W. Chiu, F. L. Shyu, C. P. Chang, R. B. Chen and M. F. Lin
Journal of the Physical Society of Japan 72 (1) 170 (2003)
https://doi.org/10.1143/JPSJ.72.170

Twenty Years of Charge Transport Studies in Intercalated Graphite

E. McRae and B. Sundqvist
Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 340 (1) 325 (2000)
https://doi.org/10.1080/10587250008025487

Two-dimensional weak-localization effect in the stage-4MoCl5graphite intercalation compound

Masatsugu Suzuki, Itsuko S. Suzuki, Keiko Matsubara and Ko Sugihara
Physical Review B 61 (7) 5013 (2000)
https://doi.org/10.1103/PhysRevB.61.5013

Raman light scattering andc-axis resistivity evidence for a pressure-induced stage transformation inPdAl2Cl8intercalated graphite

E. McRae, B. Sundqvist, T. Wagberg, et al.
Physical Review B 62 (20) 13757 (2000)
https://doi.org/10.1103/PhysRevB.62.13757

Loss spectra of graphite-related systems: A multiwall carbon nanotube, a single-wall carbon nanotube bundle, and graphite layers

F. L. Shyu and M. F. Lin
Physical Review B 62 (12) 8508 (2000)
https://doi.org/10.1103/PhysRevB.62.8508

Thermoelectric Power of Stage-2 IRr-GIC

Koji Kobayashi, Shinichiro Suzuki, Hisashi Oshima and Ko Sugihara
Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 340 (1) 143 (2000)
https://doi.org/10.1080/10587250008025457

Kinetic Properties of Current Carriers in GICs and Low Density Carbon Materials

Sergey G. Ionov, Vladimir A. Kulbachinskii, Sergey V. Kuvshinnikov and Vladimir G. Kytin
Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 340 (1) 247 (2000)
https://doi.org/10.1080/10587250008025474

Current Carriers Energy Spectrum of Sulfur Acid-Graphite and Graphite Foils

Sergey G. Ionov, Victor V. Avdeev, Elena P. Pavlova, Sergey V. Kuvshinnikov and Natalya E. Sorokina
Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 340 (1) 253 (2000)
https://doi.org/10.1080/10587250008025475

Temperature-Induced Plasmons in a Graphite Sheet

Ming-Fa Lin and Feng-Lin Shyu
Journal of the Physical Society of Japan 69 (2) 607 (2000)
https://doi.org/10.1143/JPSJ.69.607

Dimensional Crossover and Angular Dependent Magnetoresistance of Magnetic Graphite Intercalation Compounds; MCl2GIC's (M=Cu and Co)

Hirohiko Sato, Odd E. Andersson, Toshiaki Enoki, Itsuko S. Suzuki and Masatsugu Suzuki
Journal of the Physical Society of Japan 69 (4) 1136 (2000)
https://doi.org/10.1143/JPSJ.69.1136

C-Axis Thermoelectric Power of Stage-2 Graphite Intercalation Compound with Iodine Monobromide

Koji Kobayashi, Shinichiro Suzuki, Hisashi Oshima and Ko Sugihara
Journal of the Physical Society of Japan 68 (6) 2006 (1999)
https://doi.org/10.1143/JPSJ.68.2006

First-Principles Simulations of Endohedral Bromine in BC3 Nanotubes

R. A. Jishi, C. T. White and J. W. Mintmire
The Journal of Physical Chemistry B 102 (9) 1568 (1998)
https://doi.org/10.1021/jp9730407

Calculated electronic and optical properties of a graphite intercalation compound:

R Ahuja, S Auluck, O Eriksson and B Johansson
Journal of Physics: Condensed Matter 9 (45) 9845 (1997)
https://doi.org/10.1088/0953-8984/9/45/012

DV-XαCalculation and Ultraviolet Photoelectron Spectra of Gold Trichloride-Graphite Intercalation Compound (AuCl3-GIC)

Tomohiko Ishii, Rika Sekine, Toshiaki Enoki, et al.
Journal of the Physical Society of Japan 66 (11) 3424 (1997)
https://doi.org/10.1143/JPSJ.66.3424

Photoinduced desorption of potassium atoms from a two dimensional overlayer on graphite

B. Hellsing, D. V. Chakarov, L. Österlund, V. P. Zhdanov and B. Kasemo
The Journal of Chemical Physics 106 (3) 982 (1997)
https://doi.org/10.1063/1.473177

Galvanomagnetic, Optical Properties and Ultraviolet Photoelectron Spectra of Potassium-Oxygen-Graphite Intercalation Compounds

Tetsuo Yamashita, Toshiaki Enoki, Mikio Uruichi, et al.
Journal of the Physical Society of Japan 66 (1) 158 (1997)
https://doi.org/10.1143/JPSJ.66.158

Optical and Magneto-Optical Properties of Carbon Nanotube Bundles

Ming-Fa Lin and Kenneth Wen-Kai Shung
Journal of the Physical Society of Japan 66 (10) 3294 (1997)
https://doi.org/10.1143/JPSJ.66.3294

Pressure dependence of the electronic structure in the stage-3 HgCl2 graphite intercalation compound studied via the de Haas-van alphen effect

Masahiro Takashita, Haruyoshi Aoki, Takehiko Matsumoto, et al.
Czechoslovak Journal of Physics 46 (S5) 2535 (1996)
https://doi.org/10.1007/BF02570254

Heterocomplex-based graphite lamellar compounds: C22CuAl2Cl8.5 and C10Cd0.2AlCl3.7: Intercalation pathway, structure and transport

E. Mcrae, V. Polo, R. Vangelisti and M. Lelaurain
Carbon 34 (1) 101 (1996)
https://doi.org/10.1016/0008-6223(95)00141-7

Influence of pressure on the energy spectrum of low stage graphite intercalation compounds

S.G. Ionov, V.A. Kulbachinskii, N.B. Brandt, S.V. Kuvshinnikov and V.V. Avdeev
Journal of Physics and Chemistry of Solids 57 (6-8) 943 (1996)
https://doi.org/10.1016/0022-3697(95)00379-7

Electronic properties of chloride acceptor graphite intercalation compounds with AuCl3

W.R. Datars, D. Marchesan and P.K. Ummat
Journal of Physics and Chemistry of Solids 57 (6-8) 791 (1996)
https://doi.org/10.1016/0022-3697(96)00351-4

Fermi surface formed by zone folding in the stage-2InCl3graphite intercalation compound

W. R. Datars, J. D. Palidwar, T. R. Chien, et al.
Physical Review B 53 (3) 1579 (1996)
https://doi.org/10.1103/PhysRevB.53.1579

Electronic structure and physical properties of potassium-oxygen-graphite intercalation compounds

T. Yamashita, V.Z. Mordkovich, Y. Murakami, H. Suematsu and T. Enoki
Journal of Physics and Chemistry of Solids 57 (6-8) 765 (1996)
https://doi.org/10.1016/0022-3697(95)00346-0

Shubnikov–de Haas effect in low-stage acceptor-type graphite intercalation compounds

V. A. Kulbachinskii, S. G. Ionov, S. A. Lapin and A. de Visser
Physical Review B 51 (16) 10313 (1995)
https://doi.org/10.1103/PhysRevB.51.10313

A study of temperature and pressure-induced structural and electronic changes in SbCl5 intercalated graphite: Part III. Analysis of the T and p dependence of the c-axis resistivity

B. Sundqvist, O.E. Andersson, E. McRae, M. Lelaurain and J.F. Maréché
Journal of Materials Research 10 (2) 436 (1995)
https://doi.org/10.1557/JMR.1995.0436

A study of temperature and pressure induced structural and electronic changes in SbCl5 intercalated graphite: Part IV. The basal plane resistivity

O.E. Andersson, B. Sundqvist, E. McRae, M. Lelaurain and J.F. Marêché
Journal of Materials Research 10 (7) 1653 (1995)
https://doi.org/10.1557/JMR.1995.1653

Three-dimensional energy band in stage-1 acceptor graphite intercalation compounds

W. R. Datars, D. Marchesan, T. R. Chien, et al.
Physical Review B 52 (3) 1520 (1995)
https://doi.org/10.1103/PhysRevB.52.1520

Syntheses of tin and lead fluoride graphite intercalation compounds and the phase transition of the tin fluoride compound

Yoshiyuki Hattori, Masayuki Kurihara, Shinji Kawasaki, Fujio Okino and Hidekazu Touhara
Synthetic Metals 74 (1) 89 (1995)
https://doi.org/10.1016/0379-6779(95)80042-5

C-Axis Thermoelectric Power of Graphite Intercalation Compounds with Iodine Monochrolide

Koji Kobayashi, Ko Sugihara, Hisashi Oshima and Takuro Tsuzuku
Journal of the Physical Society of Japan 63 (12) 4451 (1994)
https://doi.org/10.1143/JPSJ.63.4451

Rigorous calculation of theC13orbital shift in graphite intercalation compounds

C. Frétigny, M. Saint Jean and M.-F. Quinton
Physical Review B 49 (14) 9586 (1994)
https://doi.org/10.1103/PhysRevB.49.9586

The de Haas-van Alphen effect of the stage-1 AlCl3graphite intercalation compound

T R Chien, D Marchesan, P K Ummat and W R Datars
Journal of Physics: Condensed Matter 6 (16) 3031 (1994)
https://doi.org/10.1088/0953-8984/6/16/008

13C NMR Orbital Shift Calculation in Graphite Intercalation Compounds

M. Saint Jean, C. Fretigny and M.-F. Quinton
Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 245 (1) 123 (1994)
https://doi.org/10.1080/10587259408051676

ShubnikoV-De Haas Effect in Low Stage Acceptor Type Graphite Intercalation Compounds

V. A. Kulbachinskii, S. G. Ionov, S. A. Lapin, et al.
Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 245 (1) 31 (1994)
https://doi.org/10.1080/10587259408051662

Transport Properties of A Graphitized Polyimide Film and Its Stage-2 FeCl4 − Intercalation Compound

B. Nysten, J.-P. Issi, H. Shioyama, et al.
Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 245 (1) 55 (1994)
https://doi.org/10.1080/10587259408051666

Solid State Batteries: Materials Design and Optimization

Christian Julien and Gholam-Abbas Nazri
The Kluwer International Series in Engineering and Computer Science, Solid State Batteries: Materials Design and Optimization 271 369 (1994)
https://doi.org/10.1007/978-1-4615-2704-6_6

Nuclear Magnetic Shieldings and Molecular Structure

Michael Bühl, Alexander M. Mebel, Oleg P. Charkin, et al.
Nuclear Magnetic Shieldings and Molecular Structure 561 (1993)
https://doi.org/10.1007/978-94-011-1652-7_30

Effect of FeCl4– intercalation on the transport properties of a graphitized polyimide film

B. Nysten, J-P. Issi, H. Shioyama, et al.
Journal of Materials Research 8 (9) 2299 (1993)
https://doi.org/10.1557/JMR.1993.2299

Temperature and Pressure Dependence ofC-Axis Resistivity in Potassium-Hydrogen-Graphite Intercalation Compounds

Keisuke Nakazawa, Kazuya Suzuki, Toshiaki Enoki, Ko Sugihara and Seiji Mizuno
Journal of the Physical Society of Japan 62 (12) 4386 (1993)
https://doi.org/10.1143/JPSJ.62.4386

de Haas–van Alphen effect of the stage-2 bismuth chloride graphite intercalation compound

G. Wang, P. K. Ummat and W. R. Datars
Physical Review B 47 (7) 3864 (1993)
https://doi.org/10.1103/PhysRevB.47.3864

Electron-phonon coupling strength and implications for superconductivity in alkali-metal-doped fullerenes

R. A. Jishi and M. S. Dresselhaus
Physical Review B 45 (5) 2597 (1992)
https://doi.org/10.1103/PhysRevB.45.2597

19F NMR studies of fluoride graphite intercalated compounds prepared under fluorine atmospheres

M.F. Quinton, S. Leonardelli, A.P. Legrand, R. Yazami and T. Nakajima
Journal of Fluorine Chemistry 57 (1-3) 23 (1992)
https://doi.org/10.1016/S0022-1139(00)82813-4