La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Daniel Lhuillier
J. Phys. France, 49 5 (1988) 705-710
Citations de cet article :
52 articles
Exploring free energy density and rubber elasticity of hydrogels undergoing macromolecular crowding, based on extended flory-fisk thermodynamics
Ziyu Xing Physica Scripta 100 (7) 075964 (2025) https://doi.org/10.1088/1402-4896/ade578
Conformational and static properties of tagged chains in solvents: effect of chain connectivity in solvent molecules
Hong-Yao Li, Bokai Zhang and Zhi-Yong Wang Soft Matter 20 (14) 3073 (2024) https://doi.org/10.1039/D3SM01473H
Statics, Dynamics and Linear Viscoelasticity from Dissipative Particle Dynamics Simulation of Entangled Linear Polymer Melts
Fan Wang, Lu-Kun Feng, Ye-Di Li and Hong-Xia Guo Chinese Journal of Polymer Science 41 (9) 1392 (2023) https://doi.org/10.1007/s10118-023-2931-5
The Analytical Flory Random Coil Is a Simple-to-Use Reference Model for Unfolded and Disordered Proteins
Jhullian J. Alston, Garrett M. Ginell, Andrea Soranno and Alex S. Holehouse The Journal of Physical Chemistry B 127 (21) 4746 (2023) https://doi.org/10.1021/acs.jpcb.3c01619
Jhullian J. Alston, Garrett M. Ginell, Andrea Soranno and Alex S. Holehouse (2023) https://doi.org/10.1101/2023.03.12.531990
Computational Science and Its Applications – ICCSA 2021
David R. Avellaneda B., Ramón E. R. González, Carlos Andrés Collazos-Morales and Paola Ariza-Colpas Lecture Notes in Computer Science, Computational Science and Its Applications – ICCSA 2021 12949 192 (2021) https://doi.org/10.1007/978-3-030-86653-2_14
Hierarchical modelling of polystyrene melts: from soft blobs to atomistic resolution
Guojie Zhang, Anthony Chazirakis, Vagelis A. Harmandaris, et al. Soft Matter 15 (2) 289 (2019) https://doi.org/10.1039/C8SM01830H
Static and dynamic scaling behavior of a polymer melt model with triple‐well bending potential
Sara Jabbari‐Farouji Journal of Polymer Science Part B: Polymer Physics 56 (20) 1376 (2018) https://doi.org/10.1002/polb.24721
Influence of solvent quality on conformations of crowded polymers
Wyatt J. Davis and Alan R. Denton The Journal of Chemical Physics 149 (12) (2018) https://doi.org/10.1063/1.5043434
Static and dynamic properties of large polymer melts in equilibrium
Hsiao-Ping Hsu and Kurt Kremer The Journal of Chemical Physics 144 (15) (2016) https://doi.org/10.1063/1.4946033
Sequence Determinants of the Conformational Properties of an Intrinsically Disordered Protein Prior to and upon Multisite Phosphorylation
Erik W. Martin, Alex S. Holehouse, Christy R. Grace, et al. Journal of the American Chemical Society 138 (47) 15323 (2016) https://doi.org/10.1021/jacs.6b10272
Universal shape characteristics for the mesoscopic polymer chain via dissipative particle dynamics
O Kalyuzhnyi, J M Ilnytskyi, Yu Holovatch and C von Ferber Journal of Physics: Condensed Matter 28 (50) 505101 (2016) https://doi.org/10.1088/0953-8984/28/50/505101
Effects of Macromolecular Crowding on the Collapse of Biopolymers
Hongsuk Kang, Philip A. Pincus, Changbong Hyeon and D. Thirumalai Physical Review Letters 114 (6) (2015) https://doi.org/10.1103/PhysRevLett.114.068303
Lattice Monte Carlo simulations of polymer melts
Hsiao-Ping Hsu The Journal of Chemical Physics 141 (23) (2014) https://doi.org/10.1063/1.4903506
Polymer crowding and shape distributions in polymer-nanoparticle mixtures
Wei Kang Lim and Alan R. Denton The Journal of Chemical Physics 141 (11) (2014) https://doi.org/10.1063/1.4895612
New Models of the Cell Nucleus: Crowding, Entropic Forces, Phase Separation, and Fractals
Alan R. Denton International Review of Cell and Molecular Biology, New Models of the Cell Nucleus: Crowding, Entropic Forces, Phase Separation, and Fractals 307 27 (2014) https://doi.org/10.1016/B978-0-12-800046-5.00003-5
Monte Carlo simulations of lattice models for single polymer systems
Hsiao-Ping Hsu The Journal of Chemical Physics 141 (16) (2014) https://doi.org/10.1063/1.4899258
Equilibration of High Molecular Weight Polymer Melts: A Hierarchical Strategy
Guojie Zhang, Livia A. Moreira, Torsten Stuehn, Kostas Ch. Daoulas and Kurt Kremer ACS Macro Letters 3 (2) 198 (2014) https://doi.org/10.1021/mz5000015
Pivot Algorithm and Push‐off Method for Efficient System Generation of All‐Atom Polymer Melts: Application to Hydroxyl‐Terminated Polybutadiene
Markus G. Fröhlich and Thomas D. Sewell Macromolecular Theory and Simulations 22 (6) 344 (2013) https://doi.org/10.1002/mats.201300103
A New Coarse Grained Particle‐To‐Mesh Scheme for Modeling Soft Matter
Guojie Zhang, Kostas C. Daoulas and Kurt Kremer Macromolecular Chemistry and Physics 214 (2) 214 (2013) https://doi.org/10.1002/macp.201200520
The Fractal Physical Chemistry of Polymer Solutions and Melts
The Fractal Physical Chemistry of Polymer Solutions and Melts 1 (2013) https://doi.org/10.1201/b16305-2
Scale Invariance
Annick Lesne and Michel Laguës Scale Invariance 197 (2012) https://doi.org/10.1007/978-3-642-15123-1_6
Improved Measures for the Shape of a Disordered Polymer To Test a Mean-Field Theory of Collapse
Shirin Hadizadeh, Apichart Linhananta and Steven S. Plotkin Macromolecules 44 (15) 6182 (2011) https://doi.org/10.1021/ma200454e
Fluctuating soft-sphere approach to coarse-graining of polymer models
Thomas Vettorel, Gerhard Besold and Kurt Kremer Soft Matter 6 (10) 2282 (2010) https://doi.org/10.1039/b921159d
Coil-globule transition of a single short polymer chain: An exact enumeration study
M. Ponmurugan, S. L. Narasimhan, P. S. R. Krishna and K. P. N. Murthy The Journal of Chemical Physics 126 (14) (2007) https://doi.org/10.1063/1.2719195
Models for Excluded Volume Interaction between an Unfolded Protein and Rigid Macromolecular Cosolutes: Macromolecular Crowding and Protein Stability Revisited
Allen P. Minton Biophysical Journal 88 (2) 971 (2005) https://doi.org/10.1529/biophysj.104.050351
Analysis of the Structure and Properties of Filled Polymers within the Framework of the Concept of Fractals. Part 2: Influence of the Filler on the Structure of the Polymer matrix
V. U. Novikov and G. V. Kozlov International Polymer Science and Technology 32 (3) 1 (2005) https://doi.org/10.1177/0307174X0503200301
Change in the structure of polymer matrix of particulate-filled composites: The fractal treatment
G. V. Kozlov and Yu. S. Lipatov Mechanics of Composite Materials 40 (6) 545 (2004) https://doi.org/10.1007/s11029-005-0026-8
Fractal analysis of macromolecules
Viktor U Novikov and Georgii V Kozlov Russian Chemical Reviews 69 (4) 347 (2000) https://doi.org/10.1070/RC2000v069n04ABEH000523
The coil–globule transition for a polymer chain confined in a tube: A Monte Carlo simulation
P. Sotta, A. Lesne and J. M. Victor The Journal of Chemical Physics 113 (16) 6966 (2000) https://doi.org/10.1063/1.1310617
Monte Carlo simulation of a grafted polymer chain confined in a tube
P. Sotta, A. Lesne and J. M. Victor The Journal of Chemical Physics 112 (3) 1565 (2000) https://doi.org/10.1063/1.480704
SCATTERED INTENSITY FROM HIGHER CONNECTED POLYMERS IN SOLUTION
MUSTAPHA ZEGHAIDER and MABROUK BENHAMOU Fractals 07 (04) 367 (1999) https://doi.org/10.1142/S0218348X99000372
The Distribution of the Gyration Radius of a Model of Ionomer Studied by Multicanonical Monte Carlo Simulation
Naohito Urakami and Masako Takasu Molecular Simulation 19 (1) 63 (1997) https://doi.org/10.1080/08927029708024138
Distribution of the order parameter of the coil-globule transition
J. B. Imbert, A. Lesne and J. M. Victor Physical Review E 56 (5) 5630 (1997) https://doi.org/10.1103/PhysRevE.56.5630
Renormalization group calculation of distribution functions: Structural properties for percolation clusters
J.-P. Hovi and Amnon Aharony Physical Review E 56 (1) 172 (1997) https://doi.org/10.1103/PhysRevE.56.172
Kinetic self-avoiding walks on randomly diluted lattices at the percolation threshold
S. L. Narasimhan Physical Review E 53 (2) 1986 (1996) https://doi.org/10.1103/PhysRevE.53.1986
Beyond Flory's Theory: A Computer Aided Phenomenology for Polymers
J. B. Imbert and J. M. Victor Molecular Simulation 16 (4-6) 399 (1996) https://doi.org/10.1080/08927029608024088
Multicanonical Monte Carlo Simulation of a Polymer with Stickers
Naohito Urakami and Masako Takasu Journal of the Physical Society of Japan 65 (8) 2694 (1996) https://doi.org/10.1143/JPSJ.65.2694
Advances in Chemical Physics
A. Baumgärtner and M. Muthukumar Advances in Chemical Physics, Advances in Chemical Physics 94 625 (1996) https://doi.org/10.1002/9780470141533.ch6
Statistics of self-avoiding walks on random lattices
K. Barat and Bikas K. Chakrabarti Physics Reports 258 (6) 377 (1995) https://doi.org/10.1016/0370-1573(95)00009-6
Survival of self-avoiding walks inside spherical cavities-a Monte Carlo study in two dimensions
S L Narasimhan Journal of Physics A: Mathematical and General 28 (4) 833 (1995) https://doi.org/10.1088/0305-4470/28/4/010
The number of contacts in a self-avoiding walk of variable radius of gyration in two and three dimensions
J-M. Victor, J-B. Imbert and D. Lhuillier The Journal of Chemical Physics 100 (7) 5372 (1994) https://doi.org/10.1063/1.467151
Series studies of self-avoiding walks near the theta -point on 2D critical percolation clusters
K Barat, S N Karmakar and B K Chakrabarti Journal of Physics A: Mathematical and General 25 (10) 2745 (1992) https://doi.org/10.1088/0305-4470/25/10/006
The distribution function of the radius of gyration of linear polymers in two and three dimensions
Marvin Bishop and Craig J. Saltiel The Journal of Chemical Physics 95 (1) 606 (1991) https://doi.org/10.1063/1.461462
Adhesive Bonding
Lieng-Huang Lee Adhesive Bonding 1 (1991) https://doi.org/10.1007/978-1-4757-9006-1_1
Large-Scale Molecular Systems
Apurba Kumar Roy and Alexander Blumen NATO ASI Series, Large-Scale Molecular Systems 258 525 (1991) https://doi.org/10.1007/978-1-4684-5940-1_47
Theta-point exponent for polymer chains on percolation fractals
A. K. Roy, B. K. Chakrabarti and A. Blumen Journal of Statistical Physics 61 (3-4) 903 (1990) https://doi.org/10.1007/BF01027309
Theory of branched polymers on fractal lattices
A. K. Roy and A. Blumen The Journal of Chemical Physics 93 (10) 7471 (1990) https://doi.org/10.1063/1.459421
The gyration radius distribution of two-dimensional polymer chains in a good solvent
J. M. Victor and D. Lhuillier The Journal of Chemical Physics 92 (2) 1362 (1990) https://doi.org/10.1063/1.458147
Theory of self-avoiding walks on percolation fractals
A. K. Roy and A. Blumen Journal of Statistical Physics 59 (5-6) 1581 (1990) https://doi.org/10.1007/BF01334765
New Trends in Physics and Physucal Chemistry of Polymers
Lieng-Huang Lee New Trends in Physics and Physucal Chemistry of Polymers 95 (1989) https://doi.org/10.1007/978-1-4613-0543-9_10
Polymeric fractals and the unique treatment of polymers
T.A. Vilgis Journal de Physique 49 (9) 1481 (1988) https://doi.org/10.1051/jphys:019880049090148100