La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
E. Gardner , B. Derrida , P. Mottishaw
J. Phys. France, 48 5 (1987) 741-755
Citations de cet article :
118 articles | Pages :
Complete replica solution for the transverse field Sherrington-Kirkpatrick spin glass model with continuous-time quantum Monte Carlo method
Annamária Kiss, Gergely Zaránd and Izabella Lovas Physical Review B 109 (2) (2024) https://doi.org/10.1103/PhysRevB.109.024431
Ali Montazeri and Robert Schmidt (2024) https://doi.org/10.1101/2024.10.31.621250
A new spin on optimal portfolios and ecological equilibria
Jérôme Garnier-Brun, Michael Benzaquen, Stefano Ciliberti and Jean-Philippe Bouchaud Journal of Statistical Mechanics: Theory and Experiment 2021 (9) 093408 (2021) https://doi.org/10.1088/1742-5468/ac21d9
Overcoming the complexity barrier of the dynamic message-passing method in networks with fat-tailed degree distributions
Giuseppe Torrisi, Alessia Annibale and Reimer Kühn Physical Review E 104 (4) (2021) https://doi.org/10.1103/PhysRevE.104.045313
A New Spin on Optimal Portfolios and Ecological Equilibria
Jerome Garnier-Brun, Michael Benzaquen, Stefano Ciliberti and Jean-Philippe Bouchaud SSRN Electronic Journal (2021) https://doi.org/10.2139/ssrn.3817718
On the Number of Limit Cycles in Diluted Neural Networks
Sungmin Hwang, Enrico Lanza, Giorgio Parisi, et al. Journal of Statistical Physics 181 (6) 2304 (2020) https://doi.org/10.1007/s10955-020-02664-3
On the number of limit cycles in asymmetric neural networks
Sungmin Hwang, Viola Folli, Enrico Lanza, et al. Journal of Statistical Mechanics: Theory and Experiment 2019 (5) 053402 (2019) https://doi.org/10.1088/1742-5468/ab11e3
Structure of attractors in randomly connected networks
Taro Toyoizumi and Haiping Huang Physical Review E 91 (3) (2015) https://doi.org/10.1103/PhysRevE.91.032802
Analytical theory of species abundance distributions of a random community model
Kei Tokita Population Ecology 57 (1) 53 (2015) https://doi.org/10.1007/s10144-014-0476-8
Parallel Dynamics of Continuous Hopfield Model Revisited
Kazushi Mimura Journal of the Physical Society of Japan 78 (3) 033001 (2009) https://doi.org/10.1143/JPSJ.78.033001
Signal-to-noise analysis of Hopfield neural networks with a formulation of the dynamics in terms of transition probabilities
F. Reynaga Physica A: Statistical Mechanics and its Applications 388 (23) 4872 (2009) https://doi.org/10.1016/j.physa.2009.08.004
Advances in Neural Networks – ISNN 2007
Pan Zhang and Yong Chen Lecture Notes in Computer Science, Advances in Neural Networks – ISNN 2007 4491 1144 (2007) https://doi.org/10.1007/978-3-540-72383-7_134
Part 3: Brain science, information science and associative memory model
Masato Okada New Generation Computing 24 (2) 185 (2006) https://doi.org/10.1007/BF03037297
Retrieval-time properties of the Little-Hopfield model and their physiological relevance
Sebastián Risau-Gusman and Marco A. P. Idiart Physical Review E 72 (4) (2005) https://doi.org/10.1103/PhysRevE.72.041913
The path-integral analysis of an associative memory model storing an infinite number of finite limit cycles
Kazushi Mimura, Masaki Kawamura and Masato Okada Journal of Physics A: Mathematical and General 37 (25) 6437 (2004) https://doi.org/10.1088/0305-4470/37/25/002
Transient dynamics for sequence processing neural networks
Masaki Kawamura and Masato Okada Journal of Physics A: Mathematical and General 35 (2) 253 (2002) https://doi.org/10.1088/0305-4470/35/2/306
Application of two-parameter dynamical replica theory to retrieval dynamics of associative memory with non-monotonic neurons
Toshiyuki Tanaka, Shinsuke Kakiya and Masato Okada Journal of Physics A: Mathematical and General 34 (13) 2695 (2001) https://doi.org/10.1088/0305-4470/34/13/303
Hidetoshi Nishimori (2001) https://doi.org/10.1093/acprof:oso/9780198509417.001.0001
Artificial Neural Nets and Genetic Algorithms
A. A. Frolov, D. Husek, P. Combe and V. Snášel Artificial Neural Nets and Genetic Algorithms 74 (2001) https://doi.org/10.1007/978-3-7091-6230-9_17
Sequence Processing Neural Network with a Non-Monotonic Transfer Function
Katsuki Katayama and Tsuyoshi Horiguchi Journal of the Physical Society of Japan 70 (5) 1300 (2001) https://doi.org/10.1143/JPSJ.70.1300
Retrieval Properties of a Hopfield Model with Random Asymmetric Interactions
Zhang Chengxiang, Chandan Dasgupta and Manoranjan P. Singh Neural Computation 12 (4) 865 (2000) https://doi.org/10.1162/089976600300015628
A.A. Frolov and D. Husek 622 (2000) https://doi.org/10.1109/IJCNN.2000.861538
Results from the Gardner–Derrida–Mottishaw theory of associative memory
Hideyuki Koyama, Norio Fujie and Hiroyuki Seyama Neural Networks 12 (2) 247 (1999) https://doi.org/10.1016/S0893-6080(98)00129-4
Retrieval Dynamics in Oscillator Neural Networks
Toshio Aoyagi and Katsunori Kitano Neural Computation 10 (6) 1527 (1998) https://doi.org/10.1162/089976698300017296
Relaxation, closing probabilities and transition from oscillatory to chaotic attractors in asymmetric neural networks
Ugo Bastolla and Giorgio Parisi Journal of Physics A: Mathematical and General 31 (20) 4583 (1998) https://doi.org/10.1088/0305-4470/31/20/003
Retrieval dynamics of neural networks for sparsely coded sequential patterns
Katsunori Kitano and Toshio Aoyagi Journal of Physics A: Mathematical and General 31 (36) L613 (1998) https://doi.org/10.1088/0305-4470/31/36/004
Categorization in a layered neural network
J.A. Martins and W.K. Theumann Physica A: Statistical Mechanics and its Applications 253 (1-4) 38 (1998) https://doi.org/10.1016/S0378-4371(97)00689-4
Local instability and oscillations of trajectories in a diluted symmetric neural network
Daniel Gandolfo, Madeleine Sirugue-collin and Valentin Zagrebnov Network: Computation in Neural Systems 9 (4) 563 (1998) https://doi.org/10.1088/0954-898X/9/4/010
Local instability and oscillations of trajectories in a diluted symmetric neural network
Daniel Gandolfo, Madeleine Sirugue-collin and Valentin Zagrebnov Network: Computation in Neural Systems 9 (4) 563 (1998) https://doi.org/10.1088/0954-898X_9_4_010
Effect of random synaptic dilution on recalling dynamics in an oscillator neural network
Katsunori Kitano and Toshio Aoyagi Physical Review E 57 (5) 5914 (1998) https://doi.org/10.1103/PhysRevE.57.5914
On the stability of the mean-field spin glass broken phase under non-Hamiltonian perturbations
G Iori and E Marinari Journal of Physics A: Mathematical and General 30 (13) 4489 (1997) https://doi.org/10.1088/0305-4470/30/13/007
Role of Self-Coupling in Dynamics of Diluted Hopfield Neural Networks
Bei-lai Hu and Yan-xin Zhang Chinese Physics Letters 13 (1) 1 (1996) https://doi.org/10.1088/0256-307X/13/1/001
Dynamics in the Sherrington-Kirkpatrick model. I. The first step
A. E. Patrick Journal of Statistical Physics 84 (5-6) 973 (1996) https://doi.org/10.1007/BF02174125
Auto-associative memory with two-stage dynamics of nonmonotonic neurons
H.-F. Yanai and S.-I. Amari IEEE Transactions on Neural Networks 7 (4) 803 (1996) https://doi.org/10.1109/72.508925
New results on core excited N2O obtained by electron–ion coincidence spectroscopya)
Laurence Ferrand-Tanaka, Marc Simon, Roland Thissen, Michel Lavollée and Paul Morin Review of Scientific Instruments 67 (2) 358 (1996) https://doi.org/10.1063/1.1146595
On the short-time dynamics of networks of Hebbian coupled oscillators
C J Pérez Vicente, A Arenas and L L Bonilla Journal of Physics A: Mathematical and General 29 (1) L9 (1996) https://doi.org/10.1088/0305-4470/29/1/002
Notions of Associative Memory and Sparse Coding
Masato Okada Neural Networks 9 (8) 1429 (1996) https://doi.org/10.1016/S0893-6080(96)00044-5
Analysis of the Recalling Processes of Associative Memory by an Integral Representation of the Sign Function
HIDEYUKI KOYAMA, NORIO FUJIE and TAKAMITSU FUJIWARA Neural Networks 9 (5) 737 (1996) https://doi.org/10.1016/0893-6080(95)00057-7
C Baillie, D A Johnston, E Marinari and C Naitza Journal of Physics A: Mathematical and General 29 (21) 6683 (1996) https://doi.org/10.1088/0305-4470/29/21/004
A hierarchy of macrodynamical equations for associative memory
Masato Okada Neural Networks 8 (6) 833 (1995) https://doi.org/10.1016/0893-6080(95)00001-G
Models of Neural Networks I
J. Leo van Hemmen and Reimer Kühn Physics of Neural Networks, Models of Neural Networks I 1 (1995) https://doi.org/10.1007/978-3-642-79814-6_1
A new perturbation theory for the dynamics of the Little-Hopfield model
S Gomi and F Yonezawa Journal of Physics A: Mathematical and General 28 (17) 4761 (1995) https://doi.org/10.1088/0305-4470/28/17/012
Dynamics of Ising random-bond models: neural network and random-anisotropy-axis model
D R C Dominguez and W K Theumann Journal of Physics A: Mathematical and General 28 (1) 63 (1995) https://doi.org/10.1088/0305-4470/28/1/013
Order parameter evolution in a feedforward neural network
K Y M Wong, C Campbell and D Sherrington Journal of Physics A: Mathematical and General 28 (6) 1603 (1995) https://doi.org/10.1088/0305-4470/28/6/015
Models of Neural Networks I
Bruce M. Forrest and David J. Wallace Physics of Neural Networks, Models of Neural Networks I 129 (1995) https://doi.org/10.1007/978-3-642-79814-6_3
Statistical mechanics of a multiconnected Hopfield neural-network model in a transverse field
Yu-qiang Ma and Chang-de Gong Physical Review E 51 (2) 1573 (1995) https://doi.org/10.1103/PhysRevE.51.1573
Order-parameter flow in the fully connected Hopfield model near saturation
A. C. C. Coolen and D. Sherrington Physical Review E 49 (3) 1921 (1994) https://doi.org/10.1103/PhysRevE.49.1921
Mean-field Monte Carlo approach to the Sherrington-Kirkpatrick model with asymmetric couplings
H. Eissfeller and M. Opper Physical Review E 50 (2) 709 (1994) https://doi.org/10.1103/PhysRevE.50.709
Cellular Automata, Dynamical Systems and Neural Networks
Jean-Pierre Nadal Cellular Automata, Dynamical Systems and Neural Networks 147 (1994) https://doi.org/10.1007/978-94-017-1005-3_4
On the parallel dynamics of the diluted clock neural network
Daniel Gandolfo, Jean Ruiz and Valentin A. Zagrebnov Physica A: Statistical Mechanics and its Applications 208 (3-4) 305 (1994) https://doi.org/10.1016/0378-4371(94)00058-1
Generalized quantum Mattis spin glasses withp-spin interactions
Yu-qiang Ma and Chang-de Gong Physical Review B 50 (10) 7151 (1994) https://doi.org/10.1103/PhysRevB.50.7151
Retrieval and chaos in layeredQ-Ising neural networks
D. Bollé, G. M. Shim and B. Vinck Journal of Statistical Physics 74 (3-4) 583 (1994) https://doi.org/10.1007/BF02188572
Noise distributions in retrieval dynamics of the Hopfield model
T Ozeki and H Nishimori Journal of Physics A: Mathematical and General 27 (21) 7061 (1994) https://doi.org/10.1088/0305-4470/27/21/020
Phase Locking in a Network of Neural Oscillators
A Arenas and C. J. Pérez Vicente Europhysics Letters (EPL) 26 (2) 79 (1994) https://doi.org/10.1209/0295-5075/26/2/001
The replica-symmetry-breaking solution of the Hopfield model at zero temperature: critical storage capacity and frozen field distribution
K Tokita Journal of Physics A: Mathematical and General 27 (13) 4413 (1994) https://doi.org/10.1088/0305-4470/27/13/016
Onset of 'super retrieval phase' and enhancement of the storage capacity in neural networks of nonmonotonic neurons
M Shiino and T Fukai Journal of Physics A: Mathematical and General 26 (17) L831 (1993) https://doi.org/10.1088/0305-4470/26/17/014
History-dependent attractor neural networks
Isaac Meilijson and Eytan Ruppin Network: Computation in Neural Systems 4 (2) 195 (1993) https://doi.org/10.1088/0954-898X_4_2_004
Associative memory for patterns with different bias
H Englisch and M Herrmann Network: Computation in Neural Systems 4 (2) 223 (1993) https://doi.org/10.1088/0954-898X_4_2_005
Retrieval dynamics of associative memory of the Hopfield type
H Nishimori and T Ozeki Journal of Physics A: Mathematical and General 26 (4) 859 (1993) https://doi.org/10.1088/0305-4470/26/4/013
History-dependent attractor neural networks
Isaac Meilijson and Eytan Ruppin Network: Computation in Neural Systems 4 (2) 195 (1993) https://doi.org/10.1088/0954-898X/4/2/004
Dynamics of fully connected attractor neural networks near saturation
A. C. C. Coolen and D. Sherrington Physical Review Letters 71 (23) 3886 (1993) https://doi.org/10.1103/PhysRevLett.71.3886
Remanent Overlaps in the Hopfield Model with Zero Temperature Sequential Dynamics
K. Tokita Progress of Theoretical Physics 90 (2) 329 (1993) https://doi.org/10.1143/ptp/90.2.329
Nonequilibrium dynamics and aging in the three-dimensional Ising spin-glass model
H Rieger Journal of Physics A: Mathematical and General 26 (15) L615 (1993) https://doi.org/10.1088/0305-4470/26/15/001
North-Holland Mathematical Library
Paul C. Bressloff North-Holland Mathematical Library 51 63 (1993) https://doi.org/10.1016/S0924-6509(08)70035-7
Strongly diluted networks with selfinteraction
Harald Englisch, Yegao Xiao and Kailun Yao Neural Networks 6 (5) 681 (1993) https://doi.org/10.1016/S0893-6080(05)80112-1
Retrieval process of an associative memory with a general input-output function
Hidetoshi Nishimori and Ioan Opriş Neural Networks 6 (8) 1061 (1993) https://doi.org/10.1016/S0893-6080(09)80017-8
Associative memory for patterns with different bias
H Englisch and M Herrmann Network: Computation in Neural Systems 4 (2) 223 (1993) https://doi.org/10.1088/0954-898X/4/2/005
H.-F. Yanai and S.-i. Amari 1385 (1993) https://doi.org/10.1109/ICNN.1993.298759
Subtle dynamic behaviour of finite-size Sherrington-Kirkpatrick spin glasses with nonsymmetric couplings
K Nutzel and U Krey Journal of Physics A: Mathematical and General 26 (14) L591 (1993) https://doi.org/10.1088/0305-4470/26/14/001
Dual processes in neural network models I. Neural dynamics versus dynamics of learning
A C C Coolen and L G V M Lenders Journal of Physics A: Mathematical and General 25 (9) 2577 (1992) https://doi.org/10.1088/0305-4470/25/9/028
Attractors in the fully asymmetric SK-model
M. Schreckenberg Zeitschrift f�r Physik B Condensed Matter 86 (3) 453 (1992) https://doi.org/10.1007/BF01323739
Parallel dynamics for an extremely diluted neural network
A E Patrick and V A Zagrebnov Journal of Physics A: Mathematical and General 25 (4) 1009 (1992) https://doi.org/10.1088/0305-4470/25/4/034
Remanence effects in symmetric and asymmetric spin glass models
M. Schreckenberg and H. Rieger Zeitschrift f�r Physik B Condensed Matter 86 (3) 443 (1992) https://doi.org/10.1007/BF01323738
New method for studying the dynamics of disordered spin systems without finite-size effects
H. Eissfeller and M. Opper Physical Review Letters 68 (13) 2094 (1992) https://doi.org/10.1103/PhysRevLett.68.2094
Competition between Hopfield and symmetry transform interactions in a neural net
M R Evans, D J Wallace and C Zhan Journal of Physics A: Mathematical and General 24 (18) 4445 (1991) https://doi.org/10.1088/0305-4470/24/18/028
Parallel dynamics of the neural network with the pseudoinverse coupling matrix
R D Henkel and M Opper Journal of Physics A: Mathematical and General 24 (9) 2201 (1991) https://doi.org/10.1088/0305-4470/24/9/026
External fields in attractor neural networks with different learning rules
A Rau, D Sherrington and K Y M Wong Journal of Physics A: Mathematical and General 24 (1) 313 (1991) https://doi.org/10.1088/0305-4470/24/1/037
The parallel dynamics of a dilute symmetric Hebb-rule network
T L H Watkin and D Sherrington Journal of Physics A: Mathematical and General 24 (22) 5427 (1991) https://doi.org/10.1088/0305-4470/24/22/025
Domains of attraction and the density of static metastable states, in single-pattern iterated neural networks
T B Kepler Journal of Physics A: Mathematical and General 24 (5) 1083 (1991) https://doi.org/10.1088/0305-4470/24/5/022
Models of Neural Networks
J. Leo van Hemmen and Reimer Kühn Physics of Neural Networks, Models of Neural Networks 1 (1991) https://doi.org/10.1007/978-3-642-97171-6_1
A Neural Network with Low Symmetric Connectivity
T. L. H Watkin and D Sherrington Europhysics Letters (EPL) 14 (8) 791 (1991) https://doi.org/10.1209/0295-5075/14/8/012
Models of Neural Networks
Bruce M. Forrest and David J. Wallace Physics of Neural Networks, Models of Neural Networks 121 (1991) https://doi.org/10.1007/978-3-642-97171-6_3
On the parallel dynamics for the Little-Hopfield model
A. E. Patrick and V. A. Zagrebnov Journal of Statistical Physics 63 (1-2) 59 (1991) https://doi.org/10.1007/BF01026592
A probabilistic approach to parallel dynamics for the Little-Hopfield model
A E Patrick and V A Zagrebnov Journal of Physics A: Mathematical and General 24 (14) 3413 (1991) https://doi.org/10.1088/0305-4470/24/14/028
Neural networks as perpetual information generators
Harald Englisch, Yegao Xiao and Kailun Yao Physical Review A 44 (2) 1382 (1991) https://doi.org/10.1103/PhysRevA.44.1382
Dynamics of a multi-layered perceptron model : a rigorous result
A.E. Patrick and V.A. Zagrebnov Journal de Physique 51 (11) 1129 (1990) https://doi.org/10.1051/jphys:0199000510110112900
Retrieval phase diagrams for attractor neural networks with optimal interactions
D J Amit, M R Evans, H Horner and K Y M Wong Journal of Physics A: Mathematical and General 23 (14) 3361 (1990) https://doi.org/10.1088/0305-4470/23/14/032
Distribution of Internal Fields and Dynamics of Neural Networks
R. D Henkel and M Opper Europhysics Letters (EPL) 11 (5) 403 (1990) https://doi.org/10.1209/0295-5075/11/5/003
Enlarged basin of attraction in neural networks with persistent stimuli
A. Engel, M. Bouten, A. Komoda and R. Serneels Physical Review A 42 (8) 4998 (1990) https://doi.org/10.1103/PhysRevA.42.4998
Parallel Dynamics of Neural Networks with Correlated Patterns
F Pázmándi and T Geszti Europhysics Letters (EPL) 13 (8) 673 (1990) https://doi.org/10.1209/0295-5075/13/8/001
Retrieval Enhancement Due to External Stimuli in Dilute Neural Networks
A Rau and D Sherrington Europhysics Letters (EPL) 11 (6) 499 (1990) https://doi.org/10.1209/0295-5075/11/6/003
Synchronous or asynchronous parallel dynamics. Which is more efficient?
I. Kanter Physica D: Nonlinear Phenomena 42 (1-3) 273 (1990) https://doi.org/10.1016/0167-2789(90)90082-Z
Retrieval dynamics of neural networks constructed from local and nonlocal learning rules
J. Krätzschmar and G.A. Kohring Journal de Physique 51 (3) 223 (1990) https://doi.org/10.1051/jphys:01990005103022300
Quenched versus annealed dilution in neural networks
M Bouten, A Engel, A Komoda and R Serneels Journal of Physics A: Mathematical and General 23 (20) 4643 (1990) https://doi.org/10.1088/0305-4470/23/20/025
Neural networks with many-neuron interactions
G.A. Kohring Journal de Physique 51 (2) 145 (1990) https://doi.org/10.1051/jphys:01990005102014500
Improved Retrieval in Neural Networks with External Fields
A Engel, H Englisch and A Schütte Europhysics Letters (EPL) 8 (4) 393 (1989) https://doi.org/10.1209/0295-5075/8/4/016
Dynamical Interference between the Attractors in a Neural Network
G. A Kohring Europhysics Letters (EPL) 8 (7) 697 (1989) https://doi.org/10.1209/0295-5075/8/7/020
Random dilution in a neural network for biased patterns
M R Evans Journal of Physics A: Mathematical and General 22 (12) 2103 (1989) https://doi.org/10.1088/0305-4470/22/12/014
Optimal basins of attraction in randomly sparse neural network models
E Gardner Journal of Physics A: Mathematical and General 22 (12) 1969 (1989) https://doi.org/10.1088/0305-4470/22/12/002
Theory of associative memory in randomly connected Boolean neural networks
K Y M Wong and D Sherrington Journal of Physics A: Mathematical and General 22 (12) 2233 (1989) https://doi.org/10.1088/0305-4470/22/12/022
Pages :
1 à 100 sur 118 articles