La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
T. Odijk
J. Phys. France, 48 1 (1987) 125-129
Citations de cet article :
45 articles
Reinhard Hentschke 151 (2025) https://doi.org/10.1007/978-3-031-87324-9_5
Theory of nematic-isotropic phase transitions in solutions of rodlike aggregates
Akihiko Matsuyama Liquid Crystals 1 (2024) https://doi.org/10.1080/02678292.2024.2421875
Amphiphile/Water/Decanol Lyotropic Liquid Crystalline System: Study of Thermal States of Anisometric Micelles in Nematic-Calamitic and Nematic-Discotic Mesophases
Arif Nesrullajev Tenside Surfactants Detergents 53 (3) 265 (2016) https://doi.org/10.3139/113.110432
Kinetic energy of flexible aggregates and universal power-law behavior of self-assembling in a thermal bath
V.M. Pergamenshchik The European Physical Journal Special Topics 216 (1) 219 (2013) https://doi.org/10.1140/epjst/e2013-01746-x
Model of aggregation in anisotropic liquids: Two aggregation regimes with a universal power-law concentration dependence
V. M. Pergamenshchik Journal of the Korean Physical Society 60 (3) 333 (2012) https://doi.org/10.3938/jkps.60.333
Statistical mechanics of aggregation in anisotropic solvents: kinetic energy of aggregates and universal power-law behavior far from criticality
V M Pergamenshchik Journal of Statistical Mechanics: Theory and Experiment 2012 (05) P05016 (2012) https://doi.org/10.1088/1742-5468/2012/05/P05016
Micelles forming biaxial lyotropic nematic phases
L.Q. Amaral Liquid Crystals 37 (6-7) 627 (2010) https://doi.org/10.1080/02678292.2010.487306
Linear aggregation and liquid-crystalline order: comparison of Monte Carlo simulation and analytic theory
Tatiana Kuriabova, M. D. Betterton and Matthew A. Glaser Journal of Materials Chemistry 20 (46) 10366 (2010) https://doi.org/10.1039/c0jm02355h
Liquid crystal phase formation by biopolymers
I. W. Hamley Soft Matter 6 (9) 1863 (2010) https://doi.org/10.1039/b923942a
Macromolecular Engineering
G. B. W. L. Ligthart, Oren A. Scherman, Rint P. Sijbesma and E. W. Meijer Macromolecular Engineering 351 (2007) https://doi.org/10.1002/9783527631421.ch9
Impact of Steric Interactions on the Helical Transition in Assemblies of Discotic Molecules
Jeroen van Gestel and Paul van der Schoot Langmuir 22 (1) 446 (2006) https://doi.org/10.1021/la0521903
Supramolecular Polymers, Second Edition
Reinhard Hentschke, Peter Lenz and Bernd Fodi Supramolecular Polymers, Second Edition (2005) https://doi.org/10.1201/9781420027921.ch4
Encyclopedia of Supramolecular Chemistry
Alberto Ciferri Encyclopedia of Supramolecular Chemistry 1443 (2004) https://doi.org/10.1081/E-ESMC-120012808
Monte Carlo simulation of the self-assembly and phase behavior of semiflexible equilibrium polymers
Xinjiang Lü and James T. Kindt The Journal of Chemical Physics 120 (21) 10328 (2004) https://doi.org/10.1063/1.1729855
Liquid crystallinity in linear, helical, columnar supramolecular polymers
Alberto Ciferri Liquid Crystals 31 (11) 1487 (2004) https://doi.org/10.1080/02678290412331298085
Mechanism of Supramolecular Polymerizations
Alberto Ciferri Journal of Macromolecular Science, Part C: Polymer Reviews 43 (2) 271 (2003) https://doi.org/10.1081/MC-120020162
Supramolecular Polymers
L. Brunsveld, B. J. B. Folmer, E. W. Meijer and R. P. Sijbesma Chemical Reviews 101 (12) 4071 (2001) https://doi.org/10.1021/cr990125q
Chain self-assembly and phase transitions in semiflexible polymer systems
James T. Kindt and William M. Gelbart The Journal of Chemical Physics 114 (3) 1432 (2001) https://doi.org/10.1063/1.1332810
Supramolecular liquid crystallinity as a mechanism of supramolecular polymerization
ALBERTO CIFERRI Liquid Crystals 26 (4) 489 (1999) https://doi.org/10.1080/026782999204921
Distribution functions for reversibly self-assembling spherocylinders
Eric M. Kramer and Judith Herzfeld Physical Review E 58 (5) 5934 (1998) https://doi.org/10.1103/PhysRevE.58.5934
Nematics of linear assemblies in two dimensions
Paul van der Schoot The Journal of Chemical Physics 106 (6) 2355 (1997) https://doi.org/10.1063/1.473091
Statistical-Thermodynamic Framework to Model Nonionic Micellar Solutions
Nancy Zoeller, Leo Lue and Daniel Blankschtein Langmuir 13 (20) 5258 (1997) https://doi.org/10.1021/la970308c
Molecular Theory of Bending Elasticity and Branching of Cylindrical Micelles
Sylvio May, Yardena Bohbot and Avinoam Ben-Shaul The Journal of Physical Chemistry B 101 (43) 8648 (1997) https://doi.org/10.1021/jp971328q
Quench-induced nematic textures of wormlike micelles
R. H. Tromp and P. van der Schoot Physical Review E 53 (1) 689 (1996) https://doi.org/10.1103/PhysRevE.53.689
Entropically Driven Order in Crowded Solutions: From Liquid Crystals to Cell Biology
Judith Herzfeld Accounts of Chemical Research 29 (1) 31 (1996) https://doi.org/10.1021/ar9500224
Molecular Dynamics Simulation of a Micellar System: 2,3,6,7,10,11-Hexakis(1,4,7-trioxaoctyl)triphenylene in Water
Tim Bast and Reinhard Hentschke The Journal of Physical Chemistry 100 (30) 12162 (1996) https://doi.org/10.1021/jp953790l
The hexagonal phase of wormlike micelles
Paul van der Schoot The Journal of Chemical Physics 104 (3) 1130 (1996) https://doi.org/10.1063/1.470768
Crowding-induced organization of cytoskeletal elements. III. Spontaneous bundling and sorting of self-assembled filaments with different flexibilities
Daniel T. Kulp and Judith Herzfeld Biophysical Chemistry 57 (1) 93 (1995) https://doi.org/10.1016/0301-4622(95)00050-8
Micelle size and orientational order across the nematic-isotropic transition: A field-dependent nuclear-spin-relaxation study
István Furó and Bertil Halle Physical Review E 51 (1) 466 (1995) https://doi.org/10.1103/PhysRevE.51.466
Monte Carlo and mean-field studies of phase evolution in concentrated surfactant solutions
Yardena Bohbot, Avinoam Ben-Shaul, Rony Granek and William M. Gelbart The Journal of Chemical Physics 103 (19) 8764 (1995) https://doi.org/10.1063/1.470133
Transient electric birefringence in solutions of self-assembled rods
Paul van der Schoot and Michael E. Cates The Journal of Chemical Physics 101 (6) 5040 (1994) https://doi.org/10.1063/1.467426
Micelles, Membranes, Microemulsions, and Monolayers
Neville Boden Partially Ordered Systems, Micelles, Membranes, Microemulsions, and Monolayers 153 (1994) https://doi.org/10.1007/978-1-4613-8389-5_3
The Isotropic-to-Nematic Transition in Semi-Flexible Micellar Solutions
P. van der Schoot and M. E Cates Europhysics Letters (EPL) 25 (7) 515 (1994) https://doi.org/10.1209/0295-5075/25/7/007
Assemblies of liquid crystalline polyelectrolytes and amphiphilic compounds
Alberto Ciferri Macromolecular Chemistry and Physics 195 (2) 457 (1994) https://doi.org/10.1002/macp.1994.021950207
Micelles, Membranes, Microemulsions, and Monolayers
Avinoam Ben-Shaul and William M. Gelbart Partially Ordered Systems, Micelles, Membranes, Microemulsions, and Monolayers 1 (1994) https://doi.org/10.1007/978-1-4613-8389-5_1
Liquid-crystal phases of self-assembled molecular aggregates
M P Taylor and J Herzfeld Journal of Physics: Condensed Matter 5 (17) 2651 (1993) https://doi.org/10.1088/0953-8984/5/17/002
Micellar hexagonal phases in lyotropic liquid crystals
L. Q. Amaral, A. Gulik, R. Itri and P. Mariani Physical Review A 46 (6) 3548 (1992) https://doi.org/10.1103/PhysRevA.46.3548
Isotropic, nematic, and columnar ordering in systems of persistent flexible hard rods
Reinhard Hentschke and Judith Herzfeld Physical Review A 44 (2) 1148 (1991) https://doi.org/10.1103/PhysRevA.44.1148
Effect of persistent flexibility on the isotropic, nematic and columnar ordering in a self-assembling system
Reinhard Hentschke Liquid Crystals 10 (5) 691 (1991) https://doi.org/10.1080/02678299108241736
Theory of nematic order with aggregate dehydration for reversibly assembling proteins in concentrated solutions: Application to sickle-cell hemoglobin polymers
Reinhard Hentschke and Judith Herzfeld Physical Review A 43 (12) 7019 (1991) https://doi.org/10.1103/PhysRevA.43.7019
Ordered phases in concentrated DNA solutions
Randolph L. Rill, Teresa E. Strzelecka, Michael W. Davidson and David H. Van Winkle Physica A: Statistical Mechanics and its Applications 176 (1) 87 (1991) https://doi.org/10.1016/0378-4371(91)90435-F
Phase transitions of concentrated DNA solutions in low concentrations of 1 : 1 supporting electrolyte
Teresa E. Strzelecka and Randolph L. Rill Biopolymers 30 (1-2) 57 (1990) https://doi.org/10.1002/bip.360300108
Dehydration of Protein Polymers in Concentrated Nematic Solutions
Reinhard Hentschke and Judith Herzfeld MRS Proceedings 177 (1989) https://doi.org/10.1557/PROC-177-305
Theory of amphiphilic liquid crystals: Multiple phase transitions in a model micellar system
Mark P. Taylor, Alan E. Berger and Judith Herzfeld The Journal of Chemical Physics 91 (1) 528 (1989) https://doi.org/10.1063/1.457488
Analysis of the stability of the nematic phase consisting of semiflexible surfaces
Theo Odijk The Journal of Chemical Physics 88 (11) 7167 (1988) https://doi.org/10.1063/1.454368