La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
B. Derrida , G. Weisbuch
J. Phys. France, 47 8 (1986) 1297-1303
Citations de cet article :
148 articles | Pages :
Mean-field approximation and phase transitions in an Ising-voter model on directed regular random graphs
Adam Lipowski, António Luis Ferreira, Dorota Lipowska and Aleksandra Napierała-Batygolska Physical Review E 111 (2) (2025) https://doi.org/10.1103/PhysRevE.111.024317
A sensitivity analysis of cellular automata and heterogeneous topology networks: partially-local cellular automata and homogeneous homogeneous random boolean networks
Tom Eivind Glover, Ruben Jahren, Francesco Martinuzzi, Pedro Gonçalves Lind and Stefano Nichele International Journal of Parallel, Emergent and Distributed Systems 40 (1) 59 (2025) https://doi.org/10.1080/17445760.2024.2396334
Priyotosh Sil, Olivier C. Martin and Areejit Samal (2025) https://doi.org/10.1101/2025.06.26.661727
Choices of regulatory logic class modulate the dynamical regime in random Boolean networks
Priyotosh Sil, Suchetana Mitra, Olivier C. Martin and Areejit Samal Chaos, Solitons & Fractals 195 116231 (2025) https://doi.org/10.1016/j.chaos.2025.116231
Canalization reduces the nonlinearity of regulation in biological networks
Claus Kadelka and David Murrugarra npj Systems Biology and Applications 10 (1) (2024) https://doi.org/10.1038/s41540-024-00392-y
Priyotosh Sil, Suchetana Mitra, Olivier C. Martin and Areejit Samal (2024) https://doi.org/10.1101/2024.12.17.628948
Biologically meaningful regulatory logic enhances the convergence rate in Boolean networks and bushiness of their state transition graph
Priyotosh Sil, Ajay Subbaroyan, Saumitra Kulkarni, Olivier C Martin and Areejit Samal Briefings in Bioinformatics 25 (3) (2024) https://doi.org/10.1093/bib/bbae150
A meta-analysis of Boolean network models reveals design principles of gene regulatory networks
Claus Kadelka, Taras-Michael Butrie, Evan Hilton, Jack Kinseth, Addison Schmidt and Haris Serdarevic Science Advances 10 (2) (2024) https://doi.org/10.1126/sciadv.adj0822
Modularity of biological systems: a link between structure and function
Claus Kadelka, Matthew Wheeler, Alan Veliz-Cuba, David Murrugarra and Reinhard Laubenbacher Journal of The Royal Society Interface 20 (207) (2023) https://doi.org/10.1098/rsif.2023.0505
Claus Kadelka, Matthew Wheeler, Alan Veliz-Cuba, David Murrugarra and Reinhard Laubenbacher (2023) https://doi.org/10.1101/2023.09.11.557227
Effective Connectivity and Bias Entropy Improve Prediction of Dynamical Regime in Automata Networks
Felipe Xavier Costa, Jordan C. Rozum, Austin M. Marcus and Luis M. Rocha Entropy 25 (2) 374 (2023) https://doi.org/10.3390/e25020374
Stability of linear Boolean networks
Karthik Chandrasekhar, Claus Kadelka, Reinhard Laubenbacher and David Murrugarra Physica D: Nonlinear Phenomena 451 133775 (2023) https://doi.org/10.1016/j.physd.2023.133775
Gene regulatory accelerators on cloud FPGA
Jeronimo Costa Penha, Lucas Bragança, Michael Canesche, Dener Ribeiro, José Augusto M. Nacif and Ricardo S. Ferreira Concurrency and Computation: Practice and Experience 35 (24) (2023) https://doi.org/10.1002/cpe.7822
Cancer and Chaos and the Complex Network Model of a Multicellular Organism
Andrzej Gecow, Laszlo Barna Iantovics and Mesut Tez Biology 11 (9) 1317 (2022) https://doi.org/10.3390/biology11091317
Semi-Adaptive Evolution with Spontaneous Modularity of Half-Chaotic Randomly Growing Autonomous and Open Networks
Andrzej Gecow and Laszlo Barna Iantovics Symmetry 14 (1) 92 (2022) https://doi.org/10.3390/sym14010092
Working with Dietrich Stauffer in the ’80s and ’90s
Bernard Derrida Physica A: Statistical Mechanics and its Applications 565 125599 (2021) https://doi.org/10.1016/j.physa.2020.125599
A Collection of Papers on Chaos Theory and Its Applications
Andrzej Gecow A Collection of Papers on Chaos Theory and Its Applications (2021) https://doi.org/10.5772/intechopen.93864
Andrzej Gecow and Mariusz Nowostawski 98 (2021) https://doi.org/10.1007/978-3-030-81854-8_9
Influence of reciprocal links on the dynamics of scale-free Boolean networks
Luca Agostini International Journal of Modern Physics C 31 (03) 2050040 (2020) https://doi.org/10.1142/S0129183120500400
Artificial Life and Evolutionary Computation
Davide Sapienza, Marco Villani and Roberto Serra Communications in Computer and Information Science, Artificial Life and Evolutionary Computation 830 142 (2018) https://doi.org/10.1007/978-3-319-78658-2_11
Evolution of activity-dependent adaptive Boolean networks towards criticality: an analytic approach
Taichi Haruna and Cris Moore Journal of Complex Networks 6 (6) 914 (2018) https://doi.org/10.1093/comnet/cny006
Dynamical regimes in non-ergodic random Boolean networks
Marco Villani, Davide Campioli, Chiara Damiani, et al. Natural Computing 16 (2) 353 (2017) https://doi.org/10.1007/s11047-016-9552-7
Collective dynamics in heterogeneous networks of neuronal cellular automata
Kaustubh Manchanda, Amitabha Bose and Ramakrishna Ramaswamy Physica A: Statistical Mechanics and its Applications 487 111 (2017) https://doi.org/10.1016/j.physa.2017.06.021
The influence of canalization on the robustness of Boolean networks
C. Kadelka, J. Kuipers and R. Laubenbacher Physica D: Nonlinear Phenomena 353-354 39 (2017) https://doi.org/10.1016/j.physd.2017.05.002
Multistate nested canalizing functions and their networks
Claus Kadelka, Yuan Li, Jack Kuipers, John O. Adeyeye and Reinhard Laubenbacher Theoretical Computer Science 675 1 (2017) https://doi.org/10.1016/j.tcs.2017.01.031
C. Kadelka, J. Kuipers and R. Laubenbacher (2016) https://doi.org/10.1101/064089
Microscopic instability in recurrent neural networks
Yuzuru Yamanaka, Shun-ichi Amari and Shigeru Shinomoto Physical Review E 91 (3) (2015) https://doi.org/10.1103/PhysRevE.91.032921
Dynamical properties of gene regulatory networks involved in long-term potentiation
Gonzalo S. Nido, Margaret M. Ryan, Lubica Benuskova and Joanna M. Williams Frontiers in Molecular Neuroscience 8 (2015) https://doi.org/10.3389/fnmol.2015.00042
Canalization and the stability of NK-Kauffman networks
Federico Zertuche Physica D: Nonlinear Phenomena 306 1 (2015) https://doi.org/10.1016/j.physd.2015.05.004
Phase transition in NK-Kauffman networks and its correction for Boolean irreducibility
Federico Zertuche Physica D: Nonlinear Phenomena 275 35 (2014) https://doi.org/10.1016/j.physd.2014.02.006
Damage spreading transition in an opinion dynamics model
Abdul Khaleque and Parongama Sen Physica A: Statistical Mechanics and its Applications 413 599 (2014) https://doi.org/10.1016/j.physa.2014.07.021
Classifying elementary cellular automata using compressibility, diversity and sensitivity measures
Shigeru Ninagawa and Andrew Adamatzky International Journal of Modern Physics C 25 (03) 1350098 (2014) https://doi.org/10.1142/S0129183113500988
Social insect colony as a biological regulatory system: modelling information flow in dominance networks
Anjan K. Nandi, Annagiri Sumana and Kunal Bhattacharya Journal of The Royal Society Interface 11 (101) 20140951 (2014) https://doi.org/10.1098/rsif.2014.0951
The Robustness and Mutual Information Entropy of Random Modular Boolean Networks
Nan Zhao, Bing Hui Guo and Fan Chao Meng Advanced Materials Research 989-994 4417 (2014) https://doi.org/10.4028/www.scientific.net/AMR.989-994.4417
Stabilizing gene regulatory networks through feedforward loops
C. Kadelka, D. Murrugarra and R. Laubenbacher Chaos: An Interdisciplinary Journal of Nonlinear Science 23 (2) (2013) https://doi.org/10.1063/1.4808248
Balance between Noise and Information Flow Maximizes Set Complexity of Network Dynamics
Tuomo Mäki-Marttunen, Juha Kesseli, Matti Nykter and Derek Abbott PLoS ONE 8 (3) e56523 (2013) https://doi.org/10.1371/journal.pone.0056523
State concentration exponent as a measure of quickness in Kauffman-type networks
Shun-ichi Amari, Hiroyasu Ando, Taro Toyoizumi and Naoki Masuda Physical Review E 87 (2) (2013) https://doi.org/10.1103/PhysRevE.87.022814
Phase transitions and memory effects in the dynamics of Boolean networks
Alexander Mozeika and David Saad Philosophical Magazine 92 (1-3) 210 (2012) https://doi.org/10.1080/14786435.2011.602371
Dynamics of Boolean Networks: An Exact Solution
Alexander Mozeika and David Saad Physical Review Letters 106 (21) 214101 (2011) https://doi.org/10.1103/PhysRevLett.106.214101
Canalization in the critical states of highly connected networks of competing Boolean nodes
Matthew D. Reichl and Kevin E. Bassler Physical Review E 84 (5) 056103 (2011) https://doi.org/10.1103/PhysRevE.84.056103
BOOLEAN NETWORK AND SIMMELIAN TIE IN THE CO-AUTHOR MODEL: A STUDY OF DYNAMICS AND STRUCTURE OF A STRATEGIC ALLIANCE MODEL
LAURENT TAMBAYONG Advances in Complex Systems 14 (01) 1 (2011) https://doi.org/10.1142/S0219525911002901
Finite size effects and symmetry breaking in the evolution of networks of competing Boolean nodes
M Liu and K E Bassler Journal of Physics A: Mathematical and Theoretical 44 (4) 045101 (2011) https://doi.org/10.1088/1751-8113/44/4/045101
Information Processing and Biological Systems
Jorge G. T. Zañudo, Maximino Aldana and Gustavo Martínez-Mekler Intelligent Systems Reference Library, Information Processing and Biological Systems 11 113 (2011) https://doi.org/10.1007/978-3-642-19621-8_6
Cellular Automata and Complex Systems
Eleonora Bilotta and Pietro Pantano Cellular Automata and Complex Systems 1 (2010) https://doi.org/10.4018/978-1-61520-787-9.ch001
295 (2010) https://doi.org/10.1017/CBO9780511730191.028
Cellular Automata and Complex Systems
Eleonora Bilotta and Pietro Pantano Cellular Automata and Complex Systems 51 (2010) https://doi.org/10.4018/978-1-61520-787-9.ch003
Stuart A. Kauffman 374 (2010) https://doi.org/10.1017/CBO9780511730191.036
Perturbation propagation in random and evolved Boolean networks
Christoph Fretter, Agnes Szejka and Barbara Drossel New Journal of Physics 11 (3) 033005 (2009) https://doi.org/10.1088/1367-2630/11/3/033005
Using the Renormalization Group to Classify Boolean Functions
S. N. Coppersmith Journal of Statistical Physics 130 (6) 1063 (2008) https://doi.org/10.1007/s10955-008-9486-2
Critical dynamics of randomly assembled and diluted threshold networks
Karl E. Kürten and John W. Clark Physical Review E 77 (4) 046116 (2008) https://doi.org/10.1103/PhysRevE.77.046116
Boolean delay equations: A simple way of looking at complex systems
Michael Ghil, Ilya Zaliapin and Barbara Coluzzi Physica D: Nonlinear Phenomena 237 (23) 2967 (2008) https://doi.org/10.1016/j.physd.2008.07.006
Boolean Dynamics of Biological Networks with Multiple Coupled Feedback Loops
Yung-Keun Kwon and Kwang-Hyun Cho Biophysical Journal 92 (8) 2975 (2007) https://doi.org/10.1529/biophysj.106.097097
Boolean dynamics of Kauffman models with a scale-free network
Kazumoto Iguchi, Shu-ichi Kinoshita and Hiroaki S. Yamada Journal of Theoretical Biology 247 (1) 138 (2007) https://doi.org/10.1016/j.jtbi.2007.02.010
Order or chaos in Boolean gene networks depends on the mean fraction of canalizing functions
Fredrik Karlsson and Michael Hörnquist Physica A: Statistical Mechanics and its Applications 384 (2) 747 (2007) https://doi.org/10.1016/j.physa.2007.05.050
Handbook of Brain Connectivity
John M Beggs, Jeffrey Klukas and Wei Chen Understanding Complex Systems, Handbook of Brain Connectivity 91 (2007) https://doi.org/10.1007/978-3-540-71512-2_3
Complexity of the predecessor problem in Kauffman networks
S. N. Coppersmith Physical Review E 75 (5) 051108 (2007) https://doi.org/10.1103/PhysRevE.75.051108
Chaos synchronization of two stochastically coupled random Boolean networks
Yao-Chen Hung, Ming-Chung Ho, Jiann-Shing Lih and I-Min Jiang Physics Letters A 356 (1) 35 (2006) https://doi.org/10.1016/j.physleta.2006.03.025
Emergent criticality from coevolution in random Boolean networks
Min Liu and Kevin E. Bassler Physical Review E 74 (4) 041910 (2006) https://doi.org/10.1103/PhysRevE.74.041910
Rugged fitness landscapes of Kauffman models with a scale-free network
Kazumoto Iguchi, Shuichi Kinoshita and Hiroaki Yamada Physical Review E 72 (6) 061901 (2005) https://doi.org/10.1103/PhysRevE.72.061901
SIMPLIFYING BOOLEAN NETWORKS
KURT A. RICHARDSON Advances in Complex Systems 08 (04) 365 (2005) https://doi.org/10.1142/S0219525905000518
Critical Branching Captures Activity in Living Neural Networks and Maximizes the Number of Metastable States
Clayton Haldeman and John M. Beggs Physical Review Letters 94 (5) 058101 (2005) https://doi.org/10.1103/PhysRevLett.94.058101
The ensemble approach to understand genetic regulatory networks
Stuart Kauffman Physica A: Statistical Mechanics and its Applications 340 (4) 733 (2004) https://doi.org/10.1016/j.physa.2004.05.018
A proposal for using the ensemble approach to understand genetic regulatory networks
Stuart Kauffman Journal of Theoretical Biology 230 (4) 581 (2004) https://doi.org/10.1016/j.jtbi.2003.12.017
Genetic networks with canalyzing Boolean rules are always stable
Stuart Kauffman, Carsten Peterson, Björn Samuelsson and Carl Troein Proceedings of the National Academy of Sciences 101 (49) 17102 (2004) https://doi.org/10.1073/pnas.0407783101
Evolution of Developmental Canalization in Networks of Competing Boolean Nodes
Kevin Bassler, Choongseop Lee and Yong Lee Physical Review Letters 93 (3) 038101 (2004) https://doi.org/10.1103/PhysRevLett.93.038101
Real-Time Computation at the Edge of Chaos in Recurrent Neural Networks
Nils Bertschinger and Thomas Natschläger Neural Computation 16 (7) 1413 (2004) https://doi.org/10.1162/089976604323057443
Perspectives and Problems in Nolinear Science
Maximino Aldana, Susan Coppersmith and Leo P. Kadanoff Perspectives and Problems in Nolinear Science 23 (2003) https://doi.org/10.1007/978-0-387-21789-5_2
SYNCHRONIZATION OF COUPLED EXTENDED DYNAMICAL SYSTEMS: A SHORT REVIEW
DAMIÁN H. ZANETTE and LUIS G. MORELLI International Journal of Bifurcation and Chaos 13 (04) 781 (2003) https://doi.org/10.1142/S0218127403007114
Random Boolean network models and the yeast transcriptional network
Stuart Kauffman, Carsten Peterson, Björn Samuelsson and Carl Troein Proceedings of the National Academy of Sciences 100 (25) 14796 (2003) https://doi.org/10.1073/pnas.2036429100
Scaling in Ordered and Critical Random Boolean Networks
J. E. S. Socolar and S. A. Kauffman Physical Review Letters 90 (6) 068702 (2003) https://doi.org/10.1103/PhysRevLett.90.068702
Effects of alternative connectivity on behavior of randomly constructed Boolean networks
Chikoo Oosawa and Michael A Savageau Physica D: Nonlinear Phenomena 170 (2) 143 (2002) https://doi.org/10.1016/S0167-2789(02)00530-4
A model of transcriptional regulatory networks based on biases in the observed regulation rules
Stephen E. Harris, Bruce K. Sawhill, Andrew Wuensche and Stuart Kauffman Complexity 7 (4) 23 (2002) https://doi.org/10.1002/cplx.10022
Reversible Boolean networks
S.N. Coppersmith, Leo P. Kadanoff and Zhitong Zhang Physica D: Nonlinear Phenomena 157 (1-2) 54 (2001) https://doi.org/10.1016/S0167-2789(01)00286-X
A numerical investigation of adaptation in populations of random boolean networks
Ney Lemke, Jose’e C.M. Mombach and Bardo E.J. Bodmann Physica A: Statistical Mechanics and its Applications 301 (1-4) 589 (2001) https://doi.org/10.1016/S0378-4371(01)00372-7
Synchronization of Kauffman networks
Luis G. Morelli and Damián H. Zanette Physical Review E 63 (3) (2001) https://doi.org/10.1103/PhysRevE.63.036204
DYNAMICAL BEHAVIOR OF KAUFFMAN NETWORKS WITH AND-OR GATES
ERIC GOLES and GONZALO HERNÁNDEZ Journal of Biological Systems 08 (02) 151 (2000) https://doi.org/10.1142/S0218339000000109
Topological Evolution of Dynamical Networks: Global Criticality from Local Dynamics
Stefan Bornholdt and Thimo Rohlf Physical Review Letters 84 (26) 6114 (2000) https://doi.org/10.1103/PhysRevLett.84.6114
RANDOM WALK LEARNING MACHINE
MIRCEA ANDRECUT International Journal of Modern Physics B 14 (08) 869 (2000) https://doi.org/10.1142/S0217979200000704
Through the Looking Glass of Complexity: The Dynamics of Organizations as Adaptive and Evolving Systems
Benoit Morel and Rangaraj Ramanujam Organization Science 10 (3) 278 (1999) https://doi.org/10.1287/orsc.10.3.278
Relevant elements, magnetization and dynamical properties in Kauffman networks: A numerical study
U. Bastolla and G. Parisi Physica D: Nonlinear Phenomena 115 (3-4) 203 (1998) https://doi.org/10.1016/S0167-2789(97)00243-1
Damage spreading in the ‘sandpile’ model of SOC
Ajanta Bhowal Physica A: Statistical Mechanics and its Applications 247 (1-4) 327 (1997) https://doi.org/10.1016/S0378-4371(97)00369-5
Attractors in fully asymmetric neural networks
U Bastolla and G Parisi Journal of Physics A: Mathematical and General 30 (16) 5613 (1997) https://doi.org/10.1088/0305-4470/30/16/007
Fractals and Disordered Systems
Dietrich Stauffer Fractals and Disordered Systems 339 (1996) https://doi.org/10.1007/978-3-642-84868-1_9
Closing probabilities in the Kauffman model: An annealed computation
U. Bastolla and G. Parisi Physica D: Nonlinear Phenomena 98 (1) 1 (1996) https://doi.org/10.1016/0167-2789(96)00060-7
Phase transitions and antichaos in generalized Kauffman networks
Ricard V. Solé and Bartolo Luque Physics Letters A 196 (5-6) 331 (1995) https://doi.org/10.1016/0375-9601(94)00876-Q
Reiner Kree and Annette Zippelius 201 (1995) https://doi.org/10.1007/978-3-642-79814-6_6
Models of Neural Networks I
Reimer Kühn and J. Leo van Hemmen Physics of Neural Networks, Models of Neural Networks I 221 (1995) https://doi.org/10.1007/978-3-642-79814-6_7
Simple Model of Self-Organized Biological Evolution
Jan de Boer, Bernard Derrida, Henrik Flyvbjerg, Andrew D. Jackson and Tilo Wettig Physical Review Letters 73 (6) 906 (1994) https://doi.org/10.1103/PhysRevLett.73.906
Phase transitions and antichaos in generalized Kauffman networks
Ricard V. Solé and Bartolo Luque Physics Letters A 196 (1-2) 331 (1994) https://doi.org/10.1016/0375-9601(94)91095-2
Per Bak, Henrik Flyvbjerg and Benny Lautrup 312 489 (1993) https://doi.org/10.1007/978-1-4899-1609-9_79
Storage capacity of ‘‘quantum’’ neural networks
Maciej Lewenstein and Mariusz Olko Physical Review A 45 (12) 8938 (1992) https://doi.org/10.1103/PhysRevA.45.8938
Statistical mechanics of social impact
Maciej Lewenstein, Andrzej Nowak and Bibb Latané Physical Review A 45 (2) 763 (1992) https://doi.org/10.1103/PhysRevA.45.763
Random fields on random graphs
P. Whittle Advances in Applied Probability 24 (2) 455 (1992) https://doi.org/10.2307/1427700
Random fields on random graphs
P. Whittle Advances in Applied Probability 24 (02) 455 (1992) https://doi.org/10.1017/S0001867800047601
Coevolution in a rugged fitness landscape
Per Bak, Henrik Flyvbjerg and Benny Lautrup Physical Review A 46 (10) 6724 (1992) https://doi.org/10.1103/PhysRevA.46.6724
Computer simulations of cellular automata
D Stauffer Journal of Physics A: Mathematical and General 24 (5) 909 (1991) https://doi.org/10.1088/0305-4470/24/5/007
Fractals and Disordered Systems
Dietrich Stauffer Fractals and Disordered Systems 297 (1991) https://doi.org/10.1007/978-3-642-51435-7_9
Stability of vertices in random boolean cellular automata
Tomasz Luczak and Joel E. Cohen Random Structures & Algorithms 2 (3) 327 (1991) https://doi.org/10.1002/rsa.3240020307
Models of Neural Networks
Reimer Kühn and J. Leo van Hemmen Physics of Neural Networks, Models of Neural Networks 213 (1991) https://doi.org/10.1007/978-3-642-97171-6_7
Models of Neural Networks
Reiner Kree and Annette Zippelius Physics of Neural Networks, Models of Neural Networks 193 (1991) https://doi.org/10.1007/978-3-642-97171-6_6
Pages :
1 à 100 sur 148 articles