La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
O. Thual , U. Frisch , M. Hénon
J. Phys. France, 46 9 (1985) 1485-1494
Citations de cet article :
140 articles | Pages :
Koopman theory-inspired method for learning time advancement operators in unstable flame front evolution
Rixin Yu, Marco Herbert, Markus Klein and Erdzan Hodzic Physics of Fluids 37 (2) (2025) https://doi.org/10.1063/5.0252716
Parametric learning of time-advancement operators for unstable flame evolution
Rixin Yu and Erdzan Hodzic Physics of Fluids 36 (4) (2024) https://doi.org/10.1063/5.0203546
Learning Flame Evolution Operator under Hybrid Darrieus Landau and Diffusive Thermal Instability
Rixin Yu, Erdzan Hodzic and Karl-Johan Nogenmyr Energies 17 (13) 3097 (2024) https://doi.org/10.3390/en17133097
Dynamics of hydrodynamically unstable premixed flames in a gravitational field – local and global bifurcation structures
Kaname Matsue and Moshe Matalon Combustion Theory and Modelling 27 (3) 346 (2023) https://doi.org/10.1080/13647830.2023.2165968
Deep learning of nonlinear flame fronts development due to Darrieus–Landau instability
Rixin Yu APL Machine Learning 1 (2) (2023) https://doi.org/10.1063/5.0139857
Deep Learning of Nonlinear Flame Fronts Development Due to Darrieus-Landau Instability
RIXIN YU SSRN Electronic Journal (2022) https://doi.org/10.2139/ssrn.4116290
Nonlinear analysis of flame hydrodynamic instability at large gas expansion ratio
Sergey Minaev and Vladimir Gubernov Combustion Theory and Modelling 26 (4) 654 (2022) https://doi.org/10.1080/13647830.2022.2037720
Nonlinear dynamics of flame fronts with large-scale stabilizing effects
Basile Radisson, Bruno Denet and Christophe Almarcha Physical Review E 103 (6) (2021) https://doi.org/10.1103/PhysRevE.103.063104
Combustion Physics
Michael A. Liberman Combustion Physics 219 (2021) https://doi.org/10.1007/978-3-030-85139-2_8
Nonlinear dynamics of premixed flames: from deterministic stages to stochastic influence
B. Radisson, B. Denet and C. Almarcha Journal of Fluid Mechanics 903 (2020) https://doi.org/10.1017/jfm.2020.562
Moshe Matalon (2019) https://doi.org/10.2514/6.2019-0182
Interface dynamics, pole trajectories, and cell size statistics
C. Almarcha, B. Radisson, E. Al Sarraf, et al. Physical Review E 98 (3) (2018) https://doi.org/10.1103/PhysRevE.98.030202
Numerical study of strongly-nonlinear regimes of steady premixed flame propagation. The effect of thermal gas expansion and finite-front-thickness effects
Kirill A. Kazakov and Oleg G. Kharlanov Combustion Theory and Modelling 22 (5) 835 (2018) https://doi.org/10.1080/13647830.2018.1458994
Nonlinear development of hydrodynamically-unstable flames in three-dimensional laminar flows
Advitya Patyal and Moshe Matalon Combustion and Flame 195 128 (2018) https://doi.org/10.1016/j.combustflame.2018.03.014
The Darrieus–Landau instability of premixed flames
Moshe Matalon Fluid Dynamics Research 50 (5) 051412 (2018) https://doi.org/10.1088/1873-7005/aab510
Longwave Instabilities and Patterns in Fluids
Sergey Shklyaev and Alexander Nepomnyashchy Advances in Mathematical Fluid Mechanics, Longwave Instabilities and Patterns in Fluids 1 (2017) https://doi.org/10.1007/978-1-4939-7590-7_1
Pointwise decay and smoothness for semilinear elliptic equations and travelling waves
Marco Cappiello and Fabio Nicola Journal of Mathematical Analysis and Applications 443 (1) 1 (2016) https://doi.org/10.1016/j.jmaa.2016.05.009
Laplacian growth without surface tension in filtration combustion: Analytical pole solution
Oleg Kupervasser Complexity 21 (5) 31 (2016) https://doi.org/10.1002/cplx.21627
Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation
Francesco Creta, Rachele Lamioni, Pasquale Eduardo Lapenna and Guido Troiani Physical Review E 94 (5) (2016) https://doi.org/10.1103/PhysRevE.94.053102
An analysis of flame instabilities for hydrogen–air mixtures based on Sivashinsky equation
J. Yanez and M. Kuznetsov Physics Letters A 380 (33) 2549 (2016) https://doi.org/10.1016/j.physleta.2016.05.048
Premixed-flame shapes and polynomials
Bruno Denet and Guy Joulin Physica D: Nonlinear Phenomena 292-293 46 (2015) https://doi.org/10.1016/j.physd.2014.10.007
Premixed flames propagating freely in tubes
Christophe Almarcha, Bruno Denet and Joel Quinard Combustion and Flame 162 (4) 1225 (2015) https://doi.org/10.1016/j.combustflame.2014.10.010
Shapes and speeds of steady forced premixed flames
Guy Joulin and Bruno Denet Physical Review E 89 (6) (2014) https://doi.org/10.1103/PhysRevE.89.063001
A shear instability mechanism for the pulsations of Rayleigh–Taylor unstable model flames
E. P. Hicks Journal of Fluid Mechanics 748 618 (2014) https://doi.org/10.1017/jfm.2014.198
On nonlinear model equations for the response of premixed flames to acoustic like accelerations
Rui A. Rego, Yves D’Angelo and Guy Joulin Combustion Theory and Modelling 17 (1) 53 (2013) https://doi.org/10.1080/13647830.2012.721900
Random noise and pole-dynamics in unstable front propagation
O. Kupervasser and Z. Olami Combustion, Explosion, and Shock Waves 49 (2) 141 (2013) https://doi.org/10.1134/S0010508213020032
Investigation of burning in type Ia supernovae
S. I. Glazyrin Astronomy Letters 39 (4) 221 (2013) https://doi.org/10.1134/S1063773713040026
Resolvent methods for steady premixed flame shapes governed by the Zhdanov–Trubnikov equation
Gaëtan Borot, Bruno Denet and Guy Joulin Journal of Statistical Mechanics: Theory and Experiment 2012 (10) P10023 (2012) https://doi.org/10.1088/1742-5468/2012/10/P10023
Flame wrinkles from the Zhdanov–Trubnikov equation
Guy Joulin and Bruno Denet Physics Letters A 376 (22) 1797 (2012) https://doi.org/10.1016/j.physleta.2012.03.062
Francesco Creta and Moshe Matalon (2011) https://doi.org/10.2514/6.2011-115
Turbulent propagation of premixed flames in the presence of Darrieus–Landau instability
F. Creta, N. Fogla and M. Matalon Combustion Theory and Modelling 15 (2) 267 (2011) https://doi.org/10.1080/13647830.2010.538722
On third order density contrast expansion of the evolution equation for wrinkled unsteady premixed flames
Gaël Boury and Yves D’Angelo International Journal of Non-Linear Mechanics 46 (9) 1213 (2011) https://doi.org/10.1016/j.ijnonlinmec.2011.05.018
Wrinkled flames and geometrical stretch
Bruno Denet and Guy Joulin Physical Review E 84 (1) (2011) https://doi.org/10.1103/PhysRevE.84.016315
Detailed numerical simulations of intrinsically unstable two-dimensional planar lean premixed hydrogen/air flames
C. Altantzis, C.E. Frouzakis, A.G. Tomboulides, S.G. Kerkemeier and K. Boulouchos Proceedings of the Combustion Institute 33 (1) 1261 (2011) https://doi.org/10.1016/j.proci.2010.06.082
Propagation of wrinkled turbulent flames in the context of hydrodynamic theory
F. CRETA and M. MATALON Journal of Fluid Mechanics 680 225 (2011) https://doi.org/10.1017/jfm.2011.157
Premixed Flame Propagation in Channels of Varying Width
Hazem El-Rabii, Guy Joulin and Kirill A. Kazakov SIAM Journal on Applied Mathematics 70 (8) 3287 (2010) https://doi.org/10.1137/100790252
Potential-flow models for channelled two-dimensional premixed flames around near-circular obstacles
G. Joulin, B. Denet and H. El-Rabii Physical Review E 81 (1) (2010) https://doi.org/10.1103/PhysRevE.81.016314
Hydrodynamic instability of inward-propagating flames
R. V. Fursenko, S. S. Minaev and K. -L. Pan Combustion, Explosion, and Shock Waves 45 (5) 511 (2009) https://doi.org/10.1007/s10573-009-0062-0
Flame dynamics
Moshe Matalon Proceedings of the Combustion Institute 32 (1) 57 (2009) https://doi.org/10.1016/j.proci.2008.08.002
Renormalization group and instantons in stochastic nonlinear dynamics
D. Volchenkov The European Physical Journal Special Topics 170 (1) 1 (2009) https://doi.org/10.1140/epjst/e2009-01001-3
The effect of background turbulence on the propagation of large-scale flames
Moshe Matalon Physica Scripta T132 014038 (2008) https://doi.org/10.1088/0031-8949/2008/T132/014038
Noise influence on pole solutions of the Sivashinsky equation for planar and outward propagating flames
R. V. Fursenko, K. L. Pan and S. S. Minaev Physical Review E 78 (5) (2008) https://doi.org/10.1103/PhysRevE.78.056301
Characteristics of cylindrical flame acceleration in outward expansion
Kuo-Long Pan and Roman Fursenko Physics of Fluids 20 (9) (2008) https://doi.org/10.1063/1.2981837
Sivashinsky equation for corrugated flames in the large-wrinkle limit
Guy Joulin and Bruno Denet Physical Review E 78 (1) (2008) https://doi.org/10.1103/PhysRevE.78.016315
Sivashinsky equation in a rectangular domain
Bruno Denet Physical Review E 75 (4) (2007) https://doi.org/10.1103/PhysRevE.75.046310
Intrinsic Flame Instabilities in Premixed and Nonpremixed Combustion
Moshe Matalon Annual Review of Fluid Mechanics 39 (1) 163 (2007) https://doi.org/10.1146/annurev.fluid.38.050304.092153
Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems
A. B. Al’shin, E. A. Al’shina, N. N. Kalitkin and A. B. Koryagina Computational Mathematics and Mathematical Physics 46 (8) 1320 (2006) https://doi.org/10.1134/S0965542506080057
Stationary solutions and Neumann boundary conditions in the Sivashinsky equation
Bruno Denet Physical Review E 74 (3) (2006) https://doi.org/10.1103/PhysRevE.74.036303
Numerical simulation of flames as gas-dynamic discontinuities
Yevgenii Rastigejev and Moshe Matalon Combustion Theory and Modelling 10 (3) 459 (2006) https://doi.org/10.1080/13647830500463502
Pseudoresonant interaction between flame and upstream velocity fluctuations
V. Karlin Physical Review E 73 (1) (2006) https://doi.org/10.1103/PhysRevE.73.016305
The rate of expansion of spherical flames
Vladimir Karlin and Gregory Sivashinsky Combustion Theory and Modelling 10 (4) 625 (2006) https://doi.org/10.1080/13647830600593752
Molecular transport effects on turbulent flame propagation and structure
A.N. Lipatnikov and J. Chomiak Progress in Energy and Combustion Science 31 (1) 1 (2005) https://doi.org/10.1016/j.pecs.2004.07.001
Exact Equation for Curved Stationary Flames with Arbitrary Gas Expansion
Kirill A. Kazakov Physical Review Letters 94 (9) (2005) https://doi.org/10.1103/PhysRevLett.94.094501
Velocity of weakly turbulent flames of finite thickness
V. Akkerman and V. Bychkov Combustion Theory and Modelling 9 (2) 323 (2005) https://doi.org/10.1080/13647830500098399
LOW VORTICITY AND SMALL GAS EXPANSION IN PREMIXED FLAMES
BRUNO DENET and VITALY BYCHKOV Combustion Science and Technology 177 (8) 1543 (2005) https://doi.org/10.1080/00102200590956687
Yevgenii Rastigejev and Moshe Matalon (2005) https://doi.org/10.2514/6.2005-545
On-shell description of stationary flames
Kirill A. Kazakov Physics of Fluids 17 (3) (2005) https://doi.org/10.1063/1.1864132
The cellular burning regime in type Ia supernova explosions
F. K. Röpke, W. Hillebrandt and J. C. Niemeyer Astronomy & Astrophysics 420 (2) 411 (2004) https://doi.org/10.1051/0004-6361:20035721
ESTIMATION OF THE LINEAR TRANSIENT GROWTH OF PERTURBATIONS OF CELLULAR FLAMES
V. KARLIN Mathematical Models and Methods in Applied Sciences 14 (08) 1191 (2004) https://doi.org/10.1142/S0218202504003593
IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics
Vladimir Karlin Solid Mechanics and Its Applications, IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics 113 549 (2004) https://doi.org/10.1007/1-4020-2604-8_51
The cellular burning regime in type Ia supernova explosions
F. K. Röpke, W. Hillebrandt and J. C. Niemeyer Astronomy & Astrophysics 421 (3) 783 (2004) https://doi.org/10.1051/0004-6361:20035778
Mean cell wavelengths of wrinkled premixed flames in weak gravity fields: Spontaneous evolutions
Gaël Boury, Pierre Cambray and Guy Joulin 2 Combustion Theory and Modelling 8 (4) 811 (2004) https://doi.org/10.1088/1364-7830/8/4/008
Axisymmetric versus non-axisymmetric flames in cylindrical tubes
A Petchenko and V Bychkov Combustion and Flame 136 (4) 429 (2004) https://doi.org/10.1016/j.combustflame.2003.09.019
Numerical studies of curved stationary flames in wide tubes
Michael A Liberman, Mikhail F Ivanov, Oleg E Peil, Damir M Valiev and Lars-Erik Eriksson Combustion Theory and Modelling 7 (4) 653 (2003) https://doi.org/10.1088/1364-7830/7/4/004
Computational analysis of the steady states of the Sivashinsky model of hydrodynamic flame instability
V Karlin and G Makhviladze Combustion Theory and Modelling 7 (1) 87 (2003) https://doi.org/10.1088/1364-7830/7/1/305
Turbulent flame and the darrieus–landau instability in a three-dimensional flow
V'yacheslav Akkerman and Vitaly Bychkov Combustion Theory and Modelling 7 (4) 767 (2003) https://doi.org/10.1088/1364-7830/7/4/008
A comparison analysis of Sivashinsky's type evolution equations describing flame propagation in channels
Leonardo F. Guidi and Domingos H.U. Marchetti Physics Letters A 308 (2-3) 162 (2003) https://doi.org/10.1016/S0375-9601(03)00007-0
Extension of the pole decomposition for the multidimensional Burgers equation
U. Frisch and M. Mineev-Weinstein Physical Review E 67 (6) (2003) https://doi.org/10.1103/PhysRevE.67.067301
High accuracy periodic solutions to the Sivashinsky equation
V. Karlin, V. Maz’ya and G. Schmidt Journal of Computational Physics 188 (1) 209 (2003) https://doi.org/10.1016/S0021-9991(03)00164-5
Fractional derivative estimates in Gevrey spaces, global regularity and decay for solutions to semilinear equations in Rn
Hebe A. Biagioni and Todor Gramchev Journal of Differential Equations 194 (1) 140 (2003) https://doi.org/10.1016/S0022-0396(03)00197-9
Explosion en temps fini de la solution d'un problème d'évolution de surface de film mince
Mohammed Boutat, Yves D'Angelo, Saïd Hilout and Véronique Lods Comptes Rendus. Mathématique 337 (8) 549 (2003) https://doi.org/10.1016/j.crma.2003.09.005
Some developments in premixed combustion modeling
Gregory I. Sivashinsky Proceedings of the Combustion Institute 29 (2) 1737 (2002) https://doi.org/10.1016/S1540-7489(02)80213-9
Nonlinear equation for curved stationary flames
Kirill A. Kazakov and Michael A. Liberman Physics of Fluids 14 (3) 1166 (2002) https://doi.org/10.1063/1.1447912
Dielectric breakdown model at smallη:Pole dynamics
M. B. Hastings Physical Review E 65 (6) (2002) https://doi.org/10.1103/PhysRevE.65.066121
NONLINEAR THEORY OF FLAME FRONT INSTABILITY
KIRILL A. KAZAKOV and MICHAEL A. LIBERMAN Combustion Science and Technology 174 (7) 129 (2002) https://doi.org/10.1080/00102200208984090
Nonlinear response of premixed-flame fronts to localized random forcing in the presence of a strong tangential blowing
Gaël Boury and Guy Joulin Combustion Theory and Modelling 6 (2) 243 (2002) https://doi.org/10.1088/1364-7830/6/2/306
Effect of Vorticity Production on the Structure and Velocity of Curved Flames
Kirill A. Kazakov and Michael A. Liberman Physical Review Letters 88 (6) (2002) https://doi.org/10.1103/PhysRevLett.88.064502
Cellular flames may exhibit a non-modal transient instability
V. Karlin Proceedings of the Combustion Institute 29 (2) 1537 (2002) https://doi.org/10.1016/S1540-7489(02)80188-2
Nonlocal Kardar-Parisi-Zhang equation to model interface growth
Persefoni Kechagia, Yanis C. Yortsos and Peter Lichtner Physical Review E 64 (1) (2001) https://doi.org/10.1103/PhysRevE.64.016315
Instanton solutions in the problem of wrinkled flame-front dynamics
D. Volchenkov and R. Lima Physical Review E 64 (1) (2001) https://doi.org/10.1103/PhysRevE.64.011204
Stability Limits of Curved Stationary Flames in Cylindrical Tubes
SERGEY SENCHENKO, VITALIY BYCHKOV and MICHAEL LIBERMAN Combustion Science and Technology 166 (1) 109 (2001) https://doi.org/10.1080/00102200108907822
Coherent Structures in Complex Systems
Geoff Searby and Jean-Marie Truffaut Lecture Notes in Physics, Coherent Structures in Complex Systems 567 159 (2001) https://doi.org/10.1007/3-540-44698-2_10
Comparison of experiments and a nonlinear model equation for spatially developing flame instability
G. Searby, J.-M. Truffaut and G. Joulin Physics of Fluids 13 (11) 3270 (2001) https://doi.org/10.1063/1.1407815
Coherent Structures in Complex Systems
Guy Joulin, Gaël Boury, Pierre Cambray, Yves D’Angelo and Karl Joulain Lecture Notes in Physics, Coherent Structures in Complex Systems 567 127 (2001) https://doi.org/10.1007/3-540-44698-2_9
Selection of scales in pattern-forming dynamics
Igor L. Kliakhandler Physical Review E 62 (4) R4489 (2000) https://doi.org/10.1103/PhysRevE.62.R4489
Velocity of Turbulent Flamelets with Realistic Fuel Expansion
Vitaliy Bychkov Physical Review Letters 84 (26) 6122 (2000) https://doi.org/10.1103/PhysRevLett.84.6122
Stability of Pole Solutions for Planar Propagating Flames: I. Exact Eigenvalues and Eigenfunctions
Dimitri Vaynblat and Moshe Matalon SIAM Journal on Applied Mathematics 60 (2) 679 (2000) https://doi.org/10.1137/S0036139998346439
Stability with Respect to Pseudodifferential Perturbations of Some Nonlinear Diffusive Equations
Michelle Schatzman SIAM Journal on Mathematical Analysis 32 (3) 637 (2000) https://doi.org/10.1137/S0036141099357860
Numerical studies of flames in wide tubes: Stability limits of curved stationary flames
O. Yu. Travnikov, V. V. Bychkov and M. A. Liberman Physical Review E 61 (1) 468 (2000) https://doi.org/10.1103/PhysRevE.61.468
Dynamics of combustion fronts in premixed gases: From flames to detonations
Paul Clavin Proceedings of the Combustion Institute 28 (1) 569 (2000) https://doi.org/10.1016/S0082-0784(00)80257-X
On model evolution equations for the whole surface of three-dimensional expanding wrinkled premixed flames
Yves D'angelo, Guy Joulin and Gaël Boury Combustion Theory and Modelling 4 (3) 317 (2000) https://doi.org/10.1088/1364-7830/4/3/305
Physics of reaction waves
A. G. Merzhanov and E. N. Rumanov Reviews of Modern Physics 71 (4) 1173 (1999) https://doi.org/10.1103/RevModPhys.71.1173
Nonlinear equation for curved nonstationary flames and flame stability
V. V. Bychkov, K. A. Kovalev and M. A. Liberman Physical Review E 60 (3) 2897 (1999) https://doi.org/10.1103/PhysRevE.60.2897
The nonlinear equation for curved flames applied to the problem of flames in cylindrical tubes
Vitaliy Bychkov and Andrey Kleev Physics of Fluids 11 (7) 1890 (1999) https://doi.org/10.1063/1.870051
Influence of compressibility on propagation of curved flames
O. Yu. Travnikov, V. V. Bychkov and M. A. Liberman Physics of Fluids 11 (9) 2657 (1999) https://doi.org/10.1063/1.870127
Stability analysis of flame fronts: Dynamical systems approach in the complex plane
Oleg Kupervasser, Zeev Olami and Itamar Procaccia Physical Review E 59 (3) 2587 (1999) https://doi.org/10.1103/PhysRevE.59.2587
Dynamics of closed interfaces in two-dimensional Laplacian growth
Silvina Ponce Dawson and Mark Mineev-Weinstein Physical Review E 57 (3) 3063 (1998) https://doi.org/10.1103/PhysRevE.57.3063
Nonlinear equation for a curved stationary flame and the flame velocity
Vitaliy V. Bychkov Physics of Fluids 10 (8) 2091 (1998) https://doi.org/10.1063/1.869723
Optically Induced Reorientation in a Hybrid Aligned Nematic Liquid Crystal Cell
F. Bloisi and L. Vicari Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 320 (1) 365 (1998) https://doi.org/10.1080/10587259808024407
Instability of pole solutions for planar propagating flames in sufficiently large domains
M. Rahibe, N. Aubry and G.I. Sivashinsky Combustion Theory and Modelling 2 (1) 19 (1998) https://doi.org/10.1088/1364-7830/2/1/002
Pages :
1 à 100 sur 140 articles