Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Quasi one-dimensional organic conductors: from Fröhlich conductivity and Peierls insulating state to magnetically-mediated superconductivity, a retrospective

Denis Jerome and Claude Bourbonnais
Comptes Rendus. Physique 25 (G1) 17 (2024)
https://doi.org/10.5802/crphys.164

Strontium ferrite under pressure: Potential analog to strontium ruthenate

Azin Kazemi-Moridani, Sophie Beck, Alexander Hampel, A.-M. S. Tremblay, Michel Côté and Olivier Gingras
Physical Review B 109 (16) (2024)
https://doi.org/10.1103/PhysRevB.109.165146

Mixing Effect of Even-Frequency on Odd-Frequency Pairings in Strongly Correlated Electron Systems under Magnetic Field

Kiyu Fukui and Yusuke Kato
Journal of the Physical Society of Japan 87 (1) 014706 (2018)
https://doi.org/10.7566/JPSJ.87.014706

Microscopic theory of the superconducting gap in the quasi-one-dimensional organic conductor (TMTSF)2ClO4 : Model derivation and two-particle self-consistent analysis

Hirohito Aizawa and Kazuhiko Kuroki
Physical Review B 97 (10) (2018)
https://doi.org/10.1103/PhysRevB.97.104507

Superconducting and density-wave instabilities of low-dimensional conductors with a Zeeman coupling to a magnetic field

M. Shahbazi, Y. Fuseya, H. Bakrim, A. Sedeki and C. Bourbonnais
Physical Review B 95 (16) (2017)
https://doi.org/10.1103/PhysRevB.95.165111

Evolution of the spin-density wave-superconductivity texture in the organic superconductor (TMTSF)2PF6 under pressure

C.R. Pasquier, N. Kang, B. Salameh, et al.
Physica B: Condensed Matter 407 (11) 1806 (2012)
https://doi.org/10.1016/j.physb.2012.01.035

Recent Topics of Organic Superconductors

Arzhang Ardavan, Stuart Brown, Seiichi Kagoshima, et al.
Journal of the Physical Society of Japan 81 (1) 011004 (2012)
https://doi.org/10.1143/JPSJ.81.011004

Domain walls at the spin-density-wave endpoint of the organic superconductor(TMTSF)2PF6under pressure

N. Kang, B. Salameh, P. Auban-Senzier, et al.
Physical Review B 81 (10) (2010)
https://doi.org/10.1103/PhysRevB.81.100509

Antiferromagnetic ordering of the incommensurate organic superconductor (MDT-TS)(AuI2)0.441with a high spin-flop field

Tadashi Kawamoto, Yoshimasa Bando, Takehiko Mori, et al.
Physical Review B 77 (22) (2008)
https://doi.org/10.1103/PhysRevB.77.224506

The Physics of Organic Superconductors and Conductors

C. Bourbonnais and D. Jérome
Springer Series in Materials Science, The Physics of Organic Superconductors and Conductors 110 357 (2008)
https://doi.org/10.1007/978-3-540-76672-8_12

The Physics of Organic Superconductors and Conductors

S. E. Brown, P. M. Chaikin and M. J. Naughton
Springer Series in Materials Science, The Physics of Organic Superconductors and Conductors 110 49 (2008)
https://doi.org/10.1007/978-3-540-76672-8_5

Coexistence of spin triplet superconductivity and antiferromagnetism in a quasi-one-dimensional system (TMTSF)2PF6

I.J. Lee
Journal of Magnetism and Magnetic Materials 310 (2) 657 (2007)
https://doi.org/10.1016/j.jmmm.2006.10.187

Superconductivity and antiferromagnetism in quasi-one-dimensional organic conductors (Review Article)

N. Dupuis, C. Bourbonnais and J. C. Nickel
Low Temperature Physics 32 (4) 380 (2006)
https://doi.org/10.1063/1.2199440

Coexistence of Superconductivity and Antiferromagnetism Probed by Simultaneous Nuclear Magnetic Resonance and Electrical Transport in(TMTSF)2PF6System

I. J. Lee, S. E. Brown, W. Yu, M. J. Naughton and P. M. Chaikin
Physical Review Letters 94 (19) (2005)
https://doi.org/10.1103/PhysRevLett.94.197001

SO(4) Theory of Antiferromagnetism and Superconductivity in Bechgaard Salts

Daniel Podolsky, Ehud Altman, Timofey Rostunov and Eugene Demler
Physical Review Letters 93 (24) (2004)
https://doi.org/10.1103/PhysRevLett.93.246402

Competition between triplet superconductivity and antiferromagnetism in quasi-one-dimensional electron systems

Daniel Podolsky, Ehud Altman, Timofey Rostunov and Eugene Demler
Physical Review B 70 (22) (2004)
https://doi.org/10.1103/PhysRevB.70.224503

Organic Conductors:  From Charge Density Wave TTF−TCNQ to Superconducting (TMTSF)2PF6

Denis Jérome
Chemical Reviews 104 (11) 5565 (2004)
https://doi.org/10.1021/cr030652g

Control of Electronic Properties of Molecular Conductors by Uniaxial Strain

S. Kagoshima and R. Kondo
Chemical Reviews 104 (11) 5593 (2004)
https://doi.org/10.1021/cr0306539

From Mott insulator to superconductivity in (TMTTF)2BF4: high pressure transport measurements

P. Auban-Senzier, C. Pasquier, D. Jérome, C. Carcel and J.M. Fabre
Synthetic Metals 133-134 11 (2003)
https://doi.org/10.1016/S0379-6779(02)00420-4

Superconductivity at 14.2 K in Layered Organics under Extreme Pressure

Hiromi Taniguchi, Masashi Miyashita, Kenichi Uchiyama, et al.
Journal of the Physical Society of Japan 72 (3) 468 (2003)
https://doi.org/10.1143/JPSJ.72.468

Charge- and spin-density waves in existing superconductors: competition between Cooper pairing and Peierls or excitonic instabilities

A.M. Gabovich, A.I. Voitenko and M. Ausloos
Physics Reports 367 (6) 583 (2002)
https://doi.org/10.1016/S0370-1573(02)00029-7

Spin-Density-Wave Transition in Quasi-One-Dimensional System Under Uniaxial Pressure

Mitake Miyazaki, Keita Kishigi and Yasumasa Hasegawa
Journal of the Physical Society of Japan 69 (4) 997 (2000)
https://doi.org/10.1143/JPSJ.69.997

Superconductors with charge- and spin-density waves: theory and experiment (Review)

A. M. Gabovich and A. I. Voitenko
Low Temperature Physics 26 (5) 305 (2000)
https://doi.org/10.1063/1.593902

High-field magnetoresistance of the Bechgaard salt (TMTSF)2AsF6:Fast oscillations and spin-density-wave transition

Jean Pierre Ulmet, Abdelhadi Narjis, Michael J. Naughton and Jean Marc Fabre
Physical Review B 55 (5) 3024 (1997)
https://doi.org/10.1103/PhysRevB.55.3024

Superconducting and dielectric instabilities inTl2Mo6Se6: Unusual transport properties and unsaturating critical field

R. Brusetti, A. Briggs, O. Laborde, M. Potel and P. Gougeon
Physical Review B 49 (13) 8931 (1994)
https://doi.org/10.1103/PhysRevB.49.8931

Semi-Metallic Spin Density Wave Phase in (TMTSF)2X (X=AsF6and PF6) under Pressure

Mitsuharu Nagasawa, Takashi Sambongi, Kazushige Nomura and Hiroyuki Anzai
Journal of the Physical Society of Japan 62 (11) 3974 (1993)
https://doi.org/10.1143/JPSJ.62.3974

Josephson current between partially dielectricized superconductors with spin-density waves

A. I. Voitenko, A. M. Gabovich and A. S. Shpigel’
Soviet Journal of Low Temperature Physics 18 (2) 75 (1992)
https://doi.org/10.1063/10.0033090

Long-Range Spin-Fluctuations and Superconductivity in Quasi-One-Dimensional Organic Compounds

Hiroshi Shimahara
Journal of the Physical Society of Japan 58 (5) 1735 (1989)
https://doi.org/10.1143/JPSJ.58.1735

On the band electronic structure of X [M (dmit)2]2 (X = TTF, (CH3)4N ; M = Ni, Pd) molecular conductors and superconductors

E. Canadell, I.E.-I. Rachidi, S. Ravy, et al.
Journal de Physique 50 (19) 2967 (1989)
https://doi.org/10.1051/jphys:0198900500190296700

Superconductivity and Spin Density Wave in Two Dimensional Hubbard Model

Hiroshi Shimahara and Satoshi Takada
Journal of the Physical Society of Japan 57 (3) 1044 (1988)
https://doi.org/10.1143/JPSJ.57.1044

Voltammetric Study of Organic Metals. I. The Determination of the Electrochemical Conditions for Crystal Growth

Sachiko Sakura, Hideo Imai, Hiroyuki Anzai and Tetsuo Moriya
Bulletin of the Chemical Society of Japan 61 (9) 3181 (1988)
https://doi.org/10.1246/bcsj.61.3181

Proceedings of the Yamada Conference XVIII on Superconductivity in Highly Correlated Fermion Systems

L.I. BURLACHKOV, L.P. GOR'KOV and A.G. LEBED
Proceedings of the Yamada Conference XVIII on Superconductivity in Highly Correlated Fermion Systems 500 (1987)
https://doi.org/10.1016/B978-1-4832-2920-1.50139-6

Magnetic-Field-Induced SDW Phase in the Bechgaard Salts –Dependence on the Transverse Second Harmonics in the Band Energy–

Kunihiko Yamaji
Journal of the Physical Society of Japan 56 (5) 1841 (1987)
https://doi.org/10.1143/JPSJ.56.1841

Far-infrared spectrum of di-tetramethyltetraselenafulvalene hexafluoroarsenate [(TMTSF)2AsF6]

H. K. Ng, T. Timusk, D. Jérome and K. Bechgaard
Physical Review B 32 (12) 8041 (1985)
https://doi.org/10.1103/PhysRevB.32.8041

Competition between superconductivity and spin-density waves in an organic conductor, bis-tetramethyltetraselenafulvalenium hexafluorophosphate

L. J. Azevedo, J. E. Schirber, J. M. Williams, M. A. Beno and D. R. Stephens
Physical Review B 30 (3) 1570 (1984)
https://doi.org/10.1103/PhysRevB.30.1570

Evidence for diamagnetism in(TMTSF)2FSO3(bis-tetramethyltetrathiafulvalenium fluorosulfate) at low temperature under pressure

F. Gross, H. Schwenk, K. Andres, et al.
Physical Review B 30 (3) 1282 (1984)
https://doi.org/10.1103/PhysRevB.30.1282

Shift of the SDW Wave Vector in the Transient Region in the Anisotropic 2D Hubbard Model

Kunihiko Yamaji
Journal of the Physical Society of Japan 53 (7) 2189 (1984)
https://doi.org/10.1143/JPSJ.53.2189

Influence of disorder on the metal insulator phase transition in Di-(Tetramethyltetraselenafulvalene)-ium perbromate, (TMTSF)2BrO4

S. Tomić, J.P. Pouget, D. Jérome, K. Bechgaard and J.M. Williams
Journal de Physique 44 (3) 375 (1983)
https://doi.org/10.1051/jphys:01983004403037500

First-Order Phase Transition Boundary between Superconducting and SDW Phases in the Bechgaard Salts

Kunihiko Yamaji
Journal of the Physical Society of Japan 52 (4) 1361 (1983)
https://doi.org/10.1143/JPSJ.52.1361

Influence of the Cooling Rate on the Superconducting Properties of the Organic Solid Di-Tetramethyltetraselenafulvalenium-Perchlorate,(TMTSF)2ClO4

P. Garoche, R. Brusetti and K. Bechgaard
Physical Review Letters 49 (18) 1346 (1982)
https://doi.org/10.1103/PhysRevLett.49.1346