La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
N. Fröman , P.O. Fröman
J. Phys. France, 42 11 (1981) 1491-1504
Citations de cet article :
22 articles
Leptonic Decay Widths for the Composite System of Two Relativistic Fermions
Yu. D. Chernichenko Ядерная физика 86 (4) 512 (2023) https://doi.org/10.31857/S0044002723040116
Leptonic Decay Widths for the Composite System of Two Relativistic Fermions
Yu. D. Chernichenko Physics of Atomic Nuclei 86 (4) 422 (2023) https://doi.org/10.1134/S1063778823040117
Leptonic Decay Widths for a Compound System of Two Relativistic Equal-Mass Fermions
Yu. D. Chernichenko Physics of Atomic Nuclei 85 (2) 205 (2022) https://doi.org/10.1134/S1063778822020053
Mass Spectrum of Mesons and Their Leptonic Decay Widths within the Relativistic Quasipotential Approach
V. V. Kondratjuk and Yu. D. Chernichenko Physics of Atomic Nuclei 81 (1) 51 (2018) https://doi.org/10.1134/S1063778818010143
A physically important class of integrals expressed as a parameter derivative
Per Olof Fröman and Staffan Yngve Annals of Physics 322 (9) 2145 (2007) https://doi.org/10.1016/j.aop.2006.09.005
Physical Problems Solved by the Phase-Integral Method
Nanny Fröman and Per Olof Fröman Physical Problems Solved by the Phase-Integral Method (2002) https://doi.org/10.1017/CBO9780511535086
Phase-Integral Method
Nanny Fröman, Per Olof Fröman, Erik Walles and Staffan Linnaeus Springer Tracts in Natural Philosophy, Phase-Integral Method 40 183 (1996) https://doi.org/10.1007/978-1-4612-2342-9_7
Large-Nexpansion method for a spin-1/2 particle in the presence of vector and scalar potentials
M. M. Panja, M. Bag, R. Dutt and Y. P. Varshni Physical Review A 45 (3) 1523 (1992) https://doi.org/10.1103/PhysRevA.45.1523
Relativistic Fermi-Segre formula
I. B. Goldberg, J. Stein, Akiva Ron and R. H. Pratt Physical Review A 42 (5) 2501 (1990) https://doi.org/10.1103/PhysRevA.42.2501
Determination of the potential from experimental data on energies and widths of quasi‐stationary levels
Nanny Fröman and Per Olof Fröman International Journal of Quantum Chemistry 35 (6) 751 (1989) https://doi.org/10.1002/qua.560350611
The energy levels and the corresponding normalized wave functions for a model of a compressed atom. II
Staffan Yngve Journal of Mathematical Physics 29 (4) 931 (1988) https://doi.org/10.1063/1.527990
The energy levels and the corresponding normalized wave functions for a model of a compressed atom
Per Olof Fröman, Staffan Yngve and Nanny Fröman Journal of Mathematical Physics 28 (8) 1813 (1987) https://doi.org/10.1063/1.527441
An asymptotic expansion for the quarkonium reduced wavefunction at the origin
S.S. Grigoryan Physics Letters B 198 (1) 99 (1987) https://doi.org/10.1016/0370-2693(87)90167-5
Generalizations of the Fermi-Segrè formula
Staffan Yngve Physical Review A 33 (1) 96 (1986) https://doi.org/10.1103/PhysRevA.33.96
Energy and Regge residues in quantum-mechanical ‘‘QCD’’ sum rules
Bernice Durand and Loyal Durand Physical Review D 33 (11) 3441 (1986) https://doi.org/10.1103/PhysRevD.33.3441
Improved Fermi-Segrè formula for ‖(Rn,l/rl)(0)‖2for singular and nonsingular potentials
Bernice Durand and Loyal Durand Physical Review A 33 (5) 2899 (1986) https://doi.org/10.1103/PhysRevA.33.2899
Phase-integral treatment of the linear plus Coulomb potential. II. Expectation values and the probability density at the origin
Staffan Linnaeus and Mats Düring Annals of Physics 164 (2) 506 (1985) https://doi.org/10.1016/0003-4916(85)90024-7
On the calculation of phase shifts produced by complex potentials. II
Staffan Yngve Physical Review D 31 (10) 2554 (1985) https://doi.org/10.1103/PhysRevD.31.2554
Analytic representation of the dipole oscillator-strength distribution. II. The normalization factor for electron continuum states in atomic fields
Michael A. Dillon and Mitio Inokuti The Journal of Chemical Physics 82 (10) 4415 (1985) https://doi.org/10.1063/1.448744
Connection of relativistic and nonrelativistic wave functions in the calculation of leptonic widths
Bernice Durand and Loyal Durand Physical Review D 30 (9) 1904 (1984) https://doi.org/10.1103/PhysRevD.30.1904
Duality, moments, and Regge trajectories in nonrelativistic quantum mechanics
Paul M. Fishbane, Stephen G. Gasiorowicz and Peter Kaus Physical Review D 29 (9) 2118 (1984) https://doi.org/10.1103/PhysRevD.29.2118
The Shifman-Vaĭnshteĭn-Zakharov method: Why it works, why it fails, and ways to improve it
Loyal Durand, Bernice Durand and James B. Whitenton Physical Review D 28 (3) 607 (1983) https://doi.org/10.1103/PhysRevD.28.607