La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
I. Webman , J.L. Lebowitz , M.H. Kalos
J. Phys. France, 41 6 (1980) 579-583
Citations de cet article :
42 articles
Particle simulations for inquiry-based teaching of polymer shape and entropic elasticity using computational thinking
Thomas Kraska Physics Education 58 (6) 065010 (2023) https://doi.org/10.1088/1361-6552/acf086
Evidence for the extended de Gennes regime of a semiflexible polymer in slit confinement
Guo Kang Cheong, Xiaolan Li and Kevin D. Dorfman Physical Review E 97 (2) (2018) https://doi.org/10.1103/PhysRevE.97.022502
Confinement of knotted polymers in a slit
R. Matthews, A.A. Louis and J.M. Yeomans Molecular Physics 109 (7-10) 1289 (2011) https://doi.org/10.1080/00268976.2011.556094
Induced orientational effects in relaxation of polymer melts
J. M. Deutsch and J. H. Pixley Physical Review E 80 (1) (2009) https://doi.org/10.1103/PhysRevE.80.011803
Universal properties of a single polymer chain in slit: Scaling versus molecular dynamics simulations
D. I. Dimitrov, A. Milchev, Kurt Binder, Leonid I. Klushin and Alexander M. Skvortsov The Journal of Chemical Physics 128 (23) (2008) https://doi.org/10.1063/1.2936124
Polymers confined between two parallel plane walls
Hsiao-Ping Hsu and Peter Grassberger The Journal of Chemical Physics 120 (4) 2034 (2004) https://doi.org/10.1063/1.1636454
Effect of confinement on coil-globule transition
P. K. Mishra and Sanjay Kumar The Journal of Chemical Physics 121 (17) 8642 (2004) https://doi.org/10.1063/1.1796233
Computational Methods for Macromolecules: Challenges and Applications
Mihaly Mezei Lecture Notes in Computational Science and Engineering, Computational Methods for Macromolecules: Challenges and Applications 24 177 (2002) https://doi.org/10.1007/978-3-642-56080-4_8
A polymer chain trapped between athermal walls: Concentration profile and confinement force
J. de Joannis, J Jimenez, R Rajagopalan and I Bitsanis Europhysics Letters (EPL) 51 (1) 41 (2000) https://doi.org/10.1209/epl/i2000-00335-x
Quantum Monte Carlo Methods in Physics and Chemistry
Stefano Baroni and Saverio Moroni Quantum Monte Carlo Methods in Physics and Chemistry 313 (1999) https://doi.org/10.1007/978-94-011-4792-7_12
Relaxation of a Polymer Chain Confined in a Slit
Katsumi Hagita, Sachiko Koseki and Hiroshi Takano Journal of the Physical Society of Japan 68 (6) 2144 (1999) https://doi.org/10.1143/JPSJ.68.2144
Monte Carlo Simulations of Free and Confined Walks in Reflecting Statistics
Michel R. L. Abadie and Jean Dayantis Journal of Chemical Information and Computer Sciences 37 (3) 501 (1997) https://doi.org/10.1021/ci960138u
Monte Carlo simulations of chains confined inside a cube
Michel R. L. Abadie and Jean Dayantis Macromolecular Theory and Simulations 5 (1) 93 (1996) https://doi.org/10.1002/mats.1996.040050107
Reviews in Computational Chemistry
Vassilios Galiatsatos Reviews in Computational Chemistry, Reviews in Computational Chemistry 6 149 (1995) https://doi.org/10.1002/9780470125830.ch3
Geometric constraints in polymer chains: analysis on the pearl-necklace model by Monte Carlo simulation
L. Degrève and A. Caliri Journal of Molecular Structure: THEOCHEM 335 (1-3) 123 (1995) https://doi.org/10.1016/0166-1280(94)03991-S
Statistical properties of confined macromolecules
Alexei A. Gorbunov and Alexander M. Skvortsov Advances in Colloid and Interface Science 62 (1) 31 (1995) https://doi.org/10.1016/0001-8686(95)00270-Z
Statistics of confined self-avoiding walks. II. Entropy and pressure of confinement
A Jaeckel and J Dayantis Journal of Physics A: Mathematical and General 27 (23) 7719 (1994) https://doi.org/10.1088/0305-4470/27/23/015
Statistics of confined self-avoiding walks. Part I. Chain dimensions and concentration profiles
A Jaeckel and J Dayantis Journal of Physics A: Mathematical and General 27 (8) 2653 (1994) https://doi.org/10.1088/0305-4470/27/8/005
Chain Dimensions of a Polymer Confined between Two Plates: a Mean Field Theoretical Approach
Kohzoh Shiokawa Polymer Journal 23 (7) 885 (1991) https://doi.org/10.1295/polymj.23.885
The disjoining pressure in thin fluid films confining polymer chains: a Monte Carlo study
Malcolm J. Grimson Chemical Physics Letters 180 (1-2) 129 (1991) https://doi.org/10.1016/0009-2614(91)87128-X
Computer simulation study of the θ-point in three dimensions. I. Self-avoiding walks on a simple cubic lattice
Hagai Meirovitch and H. A. Lim The Journal of Chemical Physics 92 (8) 5144 (1990) https://doi.org/10.1063/1.458548
The collapse transition of self-avoiding walks on a square lattice: A computer simulation study
H. Meirovitch and H. A. Lim The Journal of Chemical Physics 91 (4) 2544 (1989) https://doi.org/10.1063/1.457014
Monte Carlo simulation of lattice models for macromolecules
Kurt Kremer and Kurt Binder Computer Physics Reports 7 (6) 259 (1988) https://doi.org/10.1016/0167-7977(88)90015-9
Polymers with excluded volume in various geometries: Renormalization group methods
Zhen-Gang Wang, A. M. Nemirovsky and Karl F. Freed The Journal of Chemical Physics 86 (7) 4266 (1987) https://doi.org/10.1063/1.451887
Applications of the Monte Carlo Method in Statistical Physics
A. Baumgärtner Topics in Current Physics, Applications of the Monte Carlo Method in Statistical Physics 36 145 (1987) https://doi.org/10.1007/978-3-642-51703-7_5
Towards an Explanation of the 3.4-Power Dependence of the Viscosity on Molecular Weight
J. M. Deutsch Physical Review Letters 54 (1) 56 (1985) https://doi.org/10.1103/PhysRevLett.54.56
Simulation of entangled polymer chains
J. M. Deutsch Journal of Polymer Science: Polymer Symposia 73 (1) 161 (1985) https://doi.org/10.1002/polc.5070730121
Conformational properties of a polymer chain confined between two plates
Takao Ishinabe The Journal of Chemical Physics 83 (1) 423 (1985) https://doi.org/10.1063/1.449786
The ultracomputer as a vehicle for polymer simulations
Marvin Bishop Parallel Computing 1 (2) 165 (1984) https://doi.org/10.1016/S0167-8191(84)90060-7
Intrinsic viscosity of flexible macromolecules : transition from theta to collapsed state
R. Perzynski, M. Delsanti and M. Adam Journal de Physique 45 (11) 1765 (1984) https://doi.org/10.1051/jphys:0198400450110176500
Applications of the Monte Carlo Method in Statistical Physics
A. Baumgärtner Topics in Current Physics, Applications of the Monte Carlo Method in Statistical Physics 36 145 (1984) https://doi.org/10.1007/978-3-642-96788-7_5
The influence of attractions on the static and dynamic properties of simulated single and multichain systems
Marvin Bishop, M. H. Kalos and H. L. Frisch The Journal of Chemical Physics 79 (7) 3500 (1983) https://doi.org/10.1063/1.446202
Collapse transition and crossover scaling for self-avoiding walks on the diamond lattice
K Kremer, A Baumgartner and K Binder Journal of Physics A: Mathematical and General 15 (9) 2879 (1982) https://doi.org/10.1088/0305-4470/15/9/036
Investigations of model polymers: Dynamics of melts and statics of a long chain in a dilute melt of shorter chains
Marvin Bishop, David Ceperley, H. L. Frisch and M. H. Kalos The Journal of Chemical Physics 76 (3) 1557 (1982) https://doi.org/10.1063/1.443116
Adsorption of polymer chains at surfaces: Scaling and Monte Carlo analyses
E. Eisenriegler, K. Kremer and K. Binder The Journal of Chemical Physics 77 (12) 6296 (1982) https://doi.org/10.1063/1.443835
Dynamic Monte Carlo Simulation of an Entangled Many-Polymer System
J. M. Deutsch Physical Review Letters 49 (13) 926 (1982) https://doi.org/10.1103/PhysRevLett.49.926
Theory and experiment at the sol-gel phase transition
D. Stauffer Physica A: Statistical Mechanics and its Applications 106 (1-2) 177 (1981) https://doi.org/10.1016/0378-4371(81)90218-1
Self-avoiding-walks (SAW's) on diluted lattices, a Monte Carlo analysis
Kurt Kremer Zeitschrift f�r Physik B Condensed Matter 45 (2) 149 (1981) https://doi.org/10.1007/BF01293328
Monte Carlo renormalization of hard sphere polymer chains in two to five dimensions
K. Kremer, A. Baumg�rtner and K. Binder Zeitschrift f�r Physik B Condensed Matter 40 (4) 331 (1981) https://doi.org/10.1007/BF01292850
Elastic properties of a polymer chain
I. Webman, Joel L. Lebowitz and M. H. Kalos Physical Review A 23 (1) 316 (1981) https://doi.org/10.1103/PhysRevA.23.316
Dynamics of entangled polymer melts: A computer simulation
A. Baumgärtner and K. Binder The Journal of Chemical Physics 75 (6) 2994 (1981) https://doi.org/10.1063/1.442391
Investigations of static properties of two-dimensional bulk polymer systems
Marvin Bishop, David Ceperley, H. L. Frisch and M. H. Kalos The Journal of Chemical Physics 75 (11) 5538 (1981) https://doi.org/10.1063/1.441958