La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
E. Taranko
J. Phys. France, 38 2 (1977) 163-167
Citations de cet article :
39 articles
Sunirmal Saha and Krutika L. Routray (2024) https://doi.org/10.21203/rs.3.rs-4252875/v1
Structural, magnetic and dielectric properties of Terbium substituted nanosized Nickel-Ferrites from a new perspective
Sunirmal Saha and Krutika L. Routray Journal of Sol-Gel Science and Technology 111 (2) 566 (2024) https://doi.org/10.1007/s10971-024-06465-y
Structure, electromagnetic and dielectric properties of Ti-substituted lithium--zinc ferrite
Yuheng Guo, Jianguo Zhu and Haiyan Li Journal of Materials Science: Materials in Electronics 32 (7) 8354 (2021) https://doi.org/10.1007/s10854-021-05419-2
Structural and paramagnetic resonance properties correlation in lanthanum ion doped nickel ferrite nanoparticles
Sonia Gaba, Pawan S. Rana, Ashok Kumar and R.P. Pant Journal of Magnetism and Magnetic Materials 508 166866 (2020) https://doi.org/10.1016/j.jmmm.2020.166866
Self-cooling device based on thermomagnetic effect of MnxZn1−xFe2O4 (x = 0.3, 0.4, 0.5, 0.6, 0.7)/ferrofluid
Lakshita Phor and Vinod Kumar Journal of Materials Science: Materials in Electronics 30 (10) 9322 (2019) https://doi.org/10.1007/s10854-019-01262-8
Impact of Rare Earth Gd3+ Ions on Structural and Magnetic Properties of Ni0.5Zn0.5Fe2−x
Gd
x
O4 Spinel Ferrite: Useful for Advanced Spintronic Technologies
Ashwini Kumar, Jingdong Shen, Wenbo Yang, et al. Journal of Superconductivity and Novel Magnetism 31 (4) 1173 (2018) https://doi.org/10.1007/s10948-017-4273-4
Microwave processed NiMg ferrite: Studies on structural and magnetic properties
K. Chandra Babu Naidu and W. Madhuri Journal of Magnetism and Magnetic Materials 420 109 (2016) https://doi.org/10.1016/j.jmmm.2016.07.031
Effect of Cr3+ substitution on properties of nano-ZnFe2O4
Naveen Kumari, Vinod Kumar and S.K. Singh Journal of Alloys and Compounds 622 628 (2015) https://doi.org/10.1016/j.jallcom.2014.10.083
Investigation of structural and magnetic properties of Ce3+-substituted nanosized Co–Cr ferrites for a variety of applications
Ghulam Mustafa, M.U. Islam, Wenli Zhang, et al. Journal of Alloys and Compounds 618 428 (2015) https://doi.org/10.1016/j.jallcom.2014.07.132
Cation distribution and magnetic properties of nanocrystalline gallium substituted cobalt ferrite
Mohamed Bakr Mohamed and M. Yehia Journal of Alloys and Compounds 615 181 (2014) https://doi.org/10.1016/j.jallcom.2014.06.156
Structural and electrical properties of Al3+ ions doped nanocrystalline Mg0.2Mn0.5Ni0.3AlyFe2−yO4 ferrites synthesized by citrate precursor method
Satish Verma, Jagdish Chand and M. Singh Journal of Alloys and Compounds 587 763 (2014) https://doi.org/10.1016/j.jallcom.2013.10.258
Cation distribution and dielectric properties of nanocrystalline gallium substituted nickel ferrite
Zein K. Heiba, Mohamed Bakr Mohamed, M.A. Ahmed, M.A.A. Moussa and H.H. Hamdeh Journal of Alloys and Compounds 586 773 (2014) https://doi.org/10.1016/j.jallcom.2013.10.137
Magnetic Properties of Cu<sub>1-x</sub>Zn<sub>x</sub>Fe<sub>2 </sub>O<sub>4</sub>Ferrites with the Variation of Zinc Concen-tration
Shahida Akhter, Deba Prasad Paul, Md. Abdul Hakim, et al. Journal of Modern Physics 03 (05) 398 (2012) https://doi.org/10.4236/jmp.2012.35055
Substitutional effect on structural and magnetic properties of AxCo1−xFe2O4 (A=Zn, Mg and x=0.0, 0.5) ferrites
Dinesh Varshney, Kavita Verma and Ashwini Kumar Journal of Molecular Structure 1006 (1-3) 447 (2011) https://doi.org/10.1016/j.molstruc.2011.09.047
Effect of Ni doping on structural and magnetic properties of Co1–xNixFe1.9Mn0.1O4
P.A. Shaikh, R.C. Kambale, A.V. Rao and Y.D. Kolekar Journal of Magnetism and Magnetic Materials 322 (6) 718 (2010) https://doi.org/10.1016/j.jmmm.2009.10.048
Microstructure and magnetic properties of Sn-substituted MnZn ferrites
Zhiyong Xu, Zhong Yu, Ke Sun, et al. Journal of Magnetism and Magnetic Materials 321 (18) 2883 (2009) https://doi.org/10.1016/j.jmmm.2009.04.053
Composition-Size Effects in Nickel–Zinc Ferrite Nanoparticles Prepared by Aqueous Coprecipitation
Brian T. Naughton and David R. Clarke Journal of the American Ceramic Society 91 (4) 1253 (2008) https://doi.org/10.1111/j.1551-2916.2008.02281.x
Lattice Expansion and Saturation Magnetization of Nickel–Zinc Ferrite Nanoparticles Prepared by Aqueous Precipitation
Brian T. Naughton and David R. Clarke Journal of the American Ceramic Society 90 (11) 3541 (2007) https://doi.org/10.1111/j.1551-2916.2007.01980.x
Ferritas Ni-Zn: breve revisão sobre o processo convencional de fabricação e as propriedades permeabilidade magnética e constante dielétrica
V. L. O. Brito Cerâmica 52 (324) 221 (2006) https://doi.org/10.1590/S0366-69132006000400002
Mössbauer, infrared, and X‐ray studies of Ti‐doped CoCr1.2Fe0.8O4 ferrites
M. A. Amer physica status solidi (b) 237 (2) 459 (2003) https://doi.org/10.1002/pssb.200301652
Elastic behaviour of Ni–Cd ferrites
D Ravinder and T.Alivelu Manga Materials Letters 41 (5) 254 (1999) https://doi.org/10.1016/S0167-577X(99)00139-1
Thermal Expansion of Li−Co Mixed Ferrites
K. S. Mohan and Y. C. Venudhar Journal of Materials Science Letters 18 (4) 299 (1999) https://doi.org/10.1023/A:1006623021325
Effect of Gd3+ substitution on dielectric behaviour of copper-cadmium ferrites
C. B. Kolekar, P. N. Kamble, S. G. Kulkarni and A. S. Vaingankar Journal of Materials Science 30 (22) 5784 (1995) https://doi.org/10.1007/BF00356721
Electrical transport properties of some substituted nickel ferrites
Y. Purushotham, J.S. Chandel, S.P. Sud, et al. Materials Science and Engineering: B 34 (1) 67 (1995) https://doi.org/10.1016/0921-5107(95)01213-3
Influence of electromagnetic field variations on the surface-effect mechanisms of photofield emission
J. T. Lee and W. L. Schaich Physical Review B 38 (6) 3747 (1988) https://doi.org/10.1103/PhysRevB.38.3747
Yield of photofield emitted electrons from tungsten
Y. Gao and R. Reifenberger Physical Review B 35 (16) 8301 (1987) https://doi.org/10.1103/PhysRevB.35.8301
Band-structure effects in photofield emission
Y. Gao and R. Reifenberger Physical Review B 35 (13) 6627 (1987) https://doi.org/10.1103/PhysRevB.35.6627
The structure and electrical conductivity of Mn-Cd ferrite
S. A. Mazen, A. E. Abd-el-Rahlem and B. A. Sabrah Journal of Materials Science 22 (11) 4177 (1987) https://doi.org/10.1007/BF01133376
Photofield-emission spectroscopy of bulk electronic states of tungsten
David Venus and Martin J. G. Lee Physical Review B 34 (7) 4449 (1986) https://doi.org/10.1103/PhysRevB.34.4449
The shape of the total energy distribution from W(110) in sub-threshold photoemission
D.L. Haavig and R. Reifenberger Surface Science 151 (1) 128 (1985) https://doi.org/10.1016/0039-6028(85)90458-3
Sample positioner and deflection energy analyzer for measurements of photofield emission
D. Venus and M. J. G. Lee Review of Scientific Instruments 56 (6) 1206 (1985) https://doi.org/10.1063/1.1138030
Conduction mechanism and some physical properties of Cu-Cd ferrites
A.A.Ghani Awad, S.A. Mazen and A.H. Ashour Progress in Crystal Growth and Characterization 10 71 (1984) https://doi.org/10.1016/0146-3535(84)90020-0
Polarization dependence of photoexcitation in photofield emission
D. Venus and M.J.G. Lee Surface Science 125 (2) 452 (1983) https://doi.org/10.1016/0039-6028(83)90577-0
Energy-distribution studies of photoexcitation in photofield emission
David Venus and Martin J. G. Lee Physical Review B 28 (1) 437 (1983) https://doi.org/10.1103/PhysRevB.28.437
The Origin of Schottky Barriers on the Cleavage P1Lane of III–V Semiconductors: Review of Some Recent Theoretical Work
Alex Zunger MRS Proceedings 18 (1982) https://doi.org/10.1557/PROC-18-301
Photostimulated field emission — image rounded barrier model
C. Schwartz and M.W. Cole Surface Science 115 (2) 290 (1982) https://doi.org/10.1016/0039-6028(82)90409-5
Linear intensity dependence of photo-induced field emission from tungsten
D. Venus and M.J.G. Lee Surface Science 116 (2) 359 (1982) https://doi.org/10.1016/0039-6028(82)90439-3
Thermally enhanced field emission from a laser-illuminated tungsten tip: temperature rise of tip
M. J. G. Lee, R. Reifenberger, E. S. Robins and H. G. Lindenmayr Journal of Applied Physics 51 (9) 4996 (1980) https://doi.org/10.1063/1.328379
Measurement of the total energy distribution in photo-induced field emission
R. Reifenberger, H.A. Goldberg and M.J.G. Lee Surface Science 83 (2) 599 (1979) https://doi.org/10.1016/0039-6028(79)90066-9