Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

A Review of Studies on Strongly‐Coupled Coulomb Systems Since the Rise of DFT and SCCS‐1977

M. W. C. Dharmawardana
Contributions to Plasma Physics 55 (2-3) 85 (2015)
https://doi.org/10.1002/ctpp.201400073

Two‐Temperature Pair Potentials and Phonon Spectra for Simple Metals in the Warm Dense Matter Regime

L. Harbour, M. W. C. Dharma‐wardana, D. D. Klug and L. J. Lewis
Contributions to Plasma Physics 55 (2-3) 144 (2015)
https://doi.org/10.1002/ctpp.201400092

Equation of state calculations based on the self-consistent ion-sphere and ion-correlation average atom models

Balazs F. Rozsnyai
High Energy Density Physics 10 16 (2014)
https://doi.org/10.1016/j.hedp.2013.11.001

Quantum‐Statistical Equation‐of‐State Models of Dense Plasmas: High‐Pressure Hugoniot Shock Adiabats

J. C. Pain
Contributions to Plasma Physics 47 (6) 421 (2007)
https://doi.org/10.1002/ctpp.200710055

Quantum mechanical model for the study of pressure ionization in the superconfiguration approach

J C Pain, G Dejonghe and T Blenski
Journal of Physics A: Mathematical and General 39 (17) 4659 (2006)
https://doi.org/10.1088/0305-4470/39/17/S53

Static and dynamic conductivity of warm dense matter within a density-functional approach: Application to aluminum and gold

M. W. C. Dharma-wardana
Physical Review E 73 (3) (2006)
https://doi.org/10.1103/PhysRevE.73.036401

A self-consistent model for the study of electronic properties of hot dense plasmas in the superconfiguration approximation

J.C. Pain, G. Dejonghe and T. Blenski
Journal of Quantitative Spectroscopy and Radiative Transfer 99 (1-3) 451 (2006)
https://doi.org/10.1016/j.jqsrt.2005.05.036

Possibility of an unequivocal test of different models of the equation of state of aluminum in the coupling regime Γ∼1–50

François Perrot, M. W. C. Dharma-wardana and John Benage
Physical Review E 65 (4) (2002)
https://doi.org/10.1103/PhysRevE.65.046414

Theoretical Issues in the Calculation of the Electrical Resistivity of Plasmas

F. Perrot and M. W. C. Dharma-wardana
International Journal of Thermophysics 20 (4) 1299 (1999)
https://doi.org/10.1023/A:1022639928248

A theoretical study of the static structure of the liquid alloy

L E González, D J González, A Meyer and M Silbert
Journal of Physics: Condensed Matter 8 (25) 4465 (1996)
https://doi.org/10.1088/0953-8984/8/25/005

Ion-electron pseudopotentials for liquid alloys with small charge-transfer effects

L.E. González, S. Dalgiç, D.J. González and M. Silbert
Journal of Non-Crystalline Solids 205-207 901 (1996)
https://doi.org/10.1016/S0022-3093(96)00323-7

The structure and electronic density distribution in the liquid alkali metals

L E Gonzalez, D J Gonzalez and K Hoshino
Journal of Physics: Condensed Matter 5 (50) 9261 (1993)
https://doi.org/10.1088/0953-8984/5/50/008

A theoretical study of the static structure and thermodynamics of liquid lithium

L E Gonzalez, D J Gonzalez, M Silbert and J A Alonso
Journal of Physics: Condensed Matter 5 (26) 4283 (1993)
https://doi.org/10.1088/0953-8984/5/26/003

First-principles models and thermodynamic properties of liquid simple metals: A numerical comparison

F. Perrot and G. Chabrier
Physical Review A 43 (6) 2879 (1991)
https://doi.org/10.1103/PhysRevA.43.2879

Pair potentials for liquid sodium near freezing from electron theory and from inversion of the measured structure factor

F. Perrot and N. H. March
Physical Review A 41 (8) 4521 (1990)
https://doi.org/10.1103/PhysRevA.41.4521

Charge densities and interionic potentials in simple metals: Nonlinear effects. II

L. Dagens, Mark Rasolt and Roger Taylor
Physical Review B 11 (8) 2726 (1975)
https://doi.org/10.1103/PhysRevB.11.2726