The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
R. Rammal , J. Bellissard
J. Phys. France, 51 17 (1990) 1803-1830
This article has been cited by the following article(s):
70 articles
Spectral Regularity and Defects for the Kohmoto Model
Siegfried Beckus, Jean Bellissard and Yannik Thomas Annales Henri Poincaré (2025) https://doi.org/10.1007/s00023-025-01578-8
Towards full instanton trans-series in Hofstadter’s butterfly
Jie Gu and Zhaojie Xu Journal of High Energy Physics 2025 (2) (2025) https://doi.org/10.1007/JHEP02(2025)099
Jean Bellissard 700 (2024) https://doi.org/10.1016/B978-0-323-90800-9.00264-X
From Orbital Magnetism to Bulk-Edge Correspondence
Horia D. Cornean, Massimo Moscolari and Stefan Teufel Annales Henri Poincaré (2024) https://doi.org/10.1007/s00023-024-01501-7
Jean Bellissard 712 (2024) https://doi.org/10.1016/B978-0-323-90800-9.00261-4
Dilations of q-Commuting Unitaries
Malte Gerhold and Orr Moshe Shalit International Mathematics Research Notices 2022 (1) 63 (2022) https://doi.org/10.1093/imrn/rnaa093
Spectral analysis near a Dirac type crossing in a weak non-constant magnetic field
Horia Cornean, Bernard Helffer and Radu Purice Transactions of the American Mathematical Society (2021) https://doi.org/10.1090/tran/8402
Chaos on the hypercube
Yiyang Jia and Jacobus J. M. Verbaarschot Journal of High Energy Physics 2020 (11) (2020) https://doi.org/10.1007/JHEP11(2020)154
Semiclassical theory of Landau levels and magnetic breakdown in topological metals
A. Alexandradinata and Leonid Glazman Physical Review B 97 (14) (2018) https://doi.org/10.1103/PhysRevB.97.144422
Perturbative/nonperturbative aspects of Bloch electrons in a honeycomb lattice
Yasuyuki Hatsuda Progress of Theoretical and Experimental Physics 2018 (9) (2018) https://doi.org/10.1093/ptep/pty089
Landau levels, response functions and magnetic oscillations from a generalized Onsager relation
Jean-Noël Fuchs, Frédéric Piéchon and Gilles Montambaux SciPost Physics 4 (5) (2018) https://doi.org/10.21468/SciPostPhys.4.5.024
A Computational Non-commutative Geometry Program for Disordered Topological Insulators
Emil Prodan SpringerBriefs in Mathematical Physics, A Computational Non-commutative Geometry Program for Disordered Topological Insulators 23 25 (2017) https://doi.org/10.1007/978-3-319-55023-7_3
Derivation of Ray Optics Equations in Photonic Crystals via a Semiclassical Limit
Giuseppe De Nittis and Max Lein Annales Henri Poincaré 18 (5) 1789 (2017) https://doi.org/10.1007/s00023-017-0552-7
Topological Insulators from the Perspective of Non-commutative Geometry and Index Theory
Hermann Schulz-Baldes Jahresbericht der Deutschen Mathematiker-Vereinigung 118 (4) 247 (2016) https://doi.org/10.1365/s13291-016-0142-5
Peierls substitution for magnetic Bloch bands
Silvia Freund and Stefan Teufel Analysis & PDE 9 (4) 773 (2016) https://doi.org/10.2140/apde.2016.9.773
Continuity of the Spectrum of a Field of Self-Adjoint Operators
Siegfried Beckus and Jean Bellissard Annales Henri Poincaré 17 (12) 3425 (2016) https://doi.org/10.1007/s00023-016-0496-3
Algebraic area enclosed by random walks on a lattice
Jean Desbois Journal of Physics A: Mathematical and Theoretical 48 (42) 425001 (2015) https://doi.org/10.1088/1751-8113/48/42/425001
Virtual topological insulators with real quantized physics
Emil Prodan Physical Review B 91 (24) (2015) https://doi.org/10.1103/PhysRevB.91.245104
Effect of electronic band dispersion curvature on de Haas-van Alphen oscillations
Jean-Yves Fortin and Alain Audouard The European Physical Journal B 88 (9) (2015) https://doi.org/10.1140/epjb/e2015-60013-x
Perturbative approach to flat Chern bands in the Hofstadter model
Fenner Harper, Steven H. Simon and Rahul Roy Physical Review B 90 (7) (2014) https://doi.org/10.1103/PhysRevB.90.075104
A non-commutative formula for the isotropic magneto-electric response
Bryan Leung and Emil Prodan Journal of Physics A: Mathematical and Theoretical 46 (8) 085205 (2013) https://doi.org/10.1088/1751-8113/46/8/085205
Random walk on a discrete Heisenberg group
Driss Gretete Rendiconti del Circolo Matematico di Palermo 60 (3) 329 (2011) https://doi.org/10.1007/s12215-011-0053-3
Berry curvature, orbital moment, and effective quantum theory of electrons in electromagnetic fields
Ming-Che Chang and Qian Niu Journal of Physics: Condensed Matter 20 (19) 193202 (2008) https://doi.org/10.1088/0953-8984/20/19/193202
Gaussian Beam Construction for Adiabatic Perturbations
M. Dimassi, J.-C. Guillot and J. Ralston Mathematical Physics, Analysis and Geometry 9 (3) 187 (2007) https://doi.org/10.1007/s11040-006-9009-9
The Mathematica GuideBook for Numerics
Michael Trott The Mathematica GuideBook for Numerics 1 (2006) https://doi.org/10.1007/0-387-28814-7_1
Magnetic fingerprints of fractal spectra and the duality of Hofstadter models
O Gat and J E Avron New Journal of Physics 5 44 (2003) https://doi.org/10.1088/1367-2630/5/1/344
Influence of the anisotropy parameter on the spectrum of the generalizedq-symmetrized Harper equation
E Papp Journal of Physics A: Mathematical and General 36 (8) 2077 (2003) https://doi.org/10.1088/0305-4470/36/8/306
Semiclassical Analysis and the Magnetization of the Hofstadter Model
O. Gat and J. E. Avron Physical Review Letters 91 (18) (2003) https://doi.org/10.1103/PhysRevLett.91.186801
Semiclassical asymptotics in magnetic Bloch bands
M Dimassi, J C Guillot and J Ralston Journal of Physics A: Mathematical and General 35 (35) 7597 (2002) https://doi.org/10.1088/0305-4470/35/35/304
The action-angle Wigner function: a discrete, finite and algebraic phase space formalism
T Hakioglu and E Tepedelenlioglu Journal of Physics A: Mathematical and General 33 (36) 6357 (2000) https://doi.org/10.1088/0305-4470/33/36/307
The discrete fractional Fourier transform and Harper's equation
Laurence Barker Mathematika 47 (1-2) 281 (2000) https://doi.org/10.1112/S0025579300015898
The discrete harmonic oscillator, Harper's equation, and the discrete fractional Fourier transform
Laurence Barker, Çagatay Candan, Tugrul Hakioglu, M Alper Kutay and Haldun M Ozaktas Journal of Physics A: Mathematical and General 33 (11) 2209 (2000) https://doi.org/10.1088/0305-4470/33/11/304
Bandwidth statistics from the eigenvalue moments for the Harper-Hofstadter problem
O Lipan Journal of Physics A: Mathematical and General 33 (39) 6875 (2000) https://doi.org/10.1088/0305-4470/33/39/305
Symmetry properties of exact energy solutions to the Harper equation and relatedq-normalizations
E Papp and C Micu Journal of Physics A: Mathematical and General 33 (37) 6615 (2000) https://doi.org/10.1088/0305-4470/33/37/313
APPLYING THE 1/N APPROXIMATION TO THE DERIVATION OF THE BAND ENERGY OF THE HARPER EQUATION
E. PAPP Modern Physics Letters B 14 (11) 373 (2000) https://doi.org/10.1142/S0217984900000501
On spectral properties of Harper-like models
D. J. L. Herrmann and T. Janssen Journal of Mathematical Physics 40 (3) 1197 (1999) https://doi.org/10.1063/1.532795
Bethe ansatz for the Harper equation: Solution for a small commensurability parameter
I. V. Krasovsky Physical Review B 59 (1) 322 (1999) https://doi.org/10.1103/PhysRevB.59.322
Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects
Ganesh Sundaram and Qian Niu Physical Review B 59 (23) 14915 (1999) https://doi.org/10.1103/PhysRevB.59.14915
Non-polynomial solutions to theq-difference form of the Harper equation
C Micu and E Papp Journal of Physics A: Mathematical and General 31 (12) 2881 (1998) https://doi.org/10.1088/0305-4470/31/12/012
AnSU(2) analogue of the Azbel-Hofstadter Hamiltonian
E G Floratos and S Nicolis Journal of Physics A: Mathematical and General 31 (17) 3961 (1998) https://doi.org/10.1088/0305-4470/31/17/007
Change of Hall conductance induced by band crossing
Ming-Yi Lee, Ming-Che Chang and Tzay-Ming Hong Physical Review B 57 (19) 11895 (1998) https://doi.org/10.1103/PhysRevB.57.11895
Multiband energy spectra of spin-12electrons with two-dimensional magnetic modulations
Ming-Che Chang and Min-Fong Yang Physical Review B 57 (20) 13002 (1998) https://doi.org/10.1103/PhysRevB.57.13002
The Derivation of 1/N Energy-Solutions to the harper-Equation and Related Magnetizations
C. Micu and E. Papp International Journal of Modern Physics B 12 (18) 1847 (1998) https://doi.org/10.1142/S021797929800106X
Fluctuation Phenomena in High Temperature Superconductors
S. A. Ktitorov and E. S. Babaev Fluctuation Phenomena in High Temperature Superconductors 301 (1997) https://doi.org/10.1007/978-94-011-5536-6_24
Two interacting Hofstadter butterflies
Armelle Barelli, Jean Bellissard, Philippe Jacquod and Dima L. Shepelyansky Physical Review B 55 (15) 9524 (1997) https://doi.org/10.1103/PhysRevB.55.9524
On the spectrum of a random walk on the discrete Heisenberg group and the norm of Harper's operator
Cédric Béguin, Alain Valette and Andrzej Zuk Journal of Geometry and Physics 21 (4) 337 (1997) https://doi.org/10.1016/S0393-0440(96)00024-1
Hofstadter rules and generalized dimensions of the spectrum of Harper's equation
Andreas Rüdinger and Frédéric Piéchon Journal of Physics A: Mathematical and General 30 (1) 117 (1997) https://doi.org/10.1088/0305-4470/30/1/009
Double Butterfly Spectrum for Two Interacting Particles in the Harper Model
Armelle Barelli, Jean Bellissard, Philippe Jacquod and Dima L. Shepelyansky Physical Review Letters 77 (23) 4752 (1996) https://doi.org/10.1103/PhysRevLett.77.4752
First order correction to the renormalization of the phase space lattice Hamiltonian
Ritchie J Kay and Michael Wilkinson Journal of Physics A: Mathematical and General 29 (7) 1515 (1996) https://doi.org/10.1088/0305-4470/29/7/021
Semiclassical Limits of the Spectrum of Harper's Equation
Michael Wilkinson and Ritchie J. Kay Physical Review Letters 76 (11) 1896 (1996) https://doi.org/10.1103/PhysRevLett.76.1896
Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands
Ming-Che Chang and Qian Niu Physical Review B 53 (11) 7010 (1996) https://doi.org/10.1103/PhysRevB.53.7010
Energy spectrum of two-dimensional tight-binding electrons in a spatially varying magnetic field
G. Y. Oh and M. H. Lee Physical Review B 53 (3) 1225 (1996) https://doi.org/10.1103/PhysRevB.53.1225
Random walk and chaos of the spectrum. Solvable model
Leonid Malozemov Chaos, Solitons & Fractals 5 (6) 895 (1995) https://doi.org/10.1016/0960-0779(94)00221-B
Total bandwidth for Harper equation: correction to renormalization analysis
Y Tan Journal of Physics A: Mathematical and General 28 (14) 4163 (1995) https://doi.org/10.1088/0305-4470/28/14/031
The lightcone SUq(2) quantum algebra as dynamical symmetry of the Azbel-Hofstadter problem
G.G. Athanasiu and E.G. Floratos Physics Letters B 352 (1-2) 105 (1995) https://doi.org/10.1016/0370-2693(95)00464-V
Flux Phase of the Half-Filled Band
Elliott H. Lieb Physical Review Letters 73 (16) 2158 (1994) https://doi.org/10.1103/PhysRevLett.73.2158
Can one hear the shape of a group?
Alain Valette Rendiconti del Seminario Matematico e Fisico di Milano 64 (1) 31 (1994) https://doi.org/10.1007/BF02925188
Transition to Chaos in Classical and Quantum Mechanics
Jean Bellissard Lecture Notes in Mathematics, Transition to Chaos in Classical and Quantum Mechanics 1589 1 (1994) https://doi.org/10.1007/BFb0074074
Lattice magnetic walks
T Blum and Y Shapir Journal of Physics A: Mathematical and General 27 (2) 295 (1994) https://doi.org/10.1088/0305-4470/27/2/015
Generalized Wannier function and renormalization of Harper's equation
M Wilkinson Journal of Physics A: Mathematical and General 27 (24) 8123 (1994) https://doi.org/10.1088/0305-4470/27/24/021
Toda lattice invariants and the Harper's Hamiltonian thermodynamics
S A Ktitorov and L Jastrabik Journal of Physics A: Mathematical and General 27 (16) 5687 (1994) https://doi.org/10.1088/0305-4470/27/16/031
Lipshitz continuity of gap boundaries for Hofstadter-like spectra
J. Bellissard Communications in Mathematical Physics 160 (3) 599 (1994) https://doi.org/10.1007/BF02173432
Coherent states in Finite Quantum Mechanics
G.G. Athanasiu and E.G. Floratos Nuclear Physics B 425 (1-2) 343 (1994) https://doi.org/10.1016/0550-3213(94)90184-8
Statistical Mechanics
Elliott H. Lieb and Michael Loss Statistical Mechanics 457 (1993) https://doi.org/10.1007/978-3-662-10018-9_28
Semiclassical analysis of Harper-like models
Armelle Barelli and Robert Fleckinger Physical Review B 46 (18) 11559 (1992) https://doi.org/10.1103/PhysRevB.46.11559
From Number Theory to Physics
Jean Bellissard From Number Theory to Physics 538 (1992) https://doi.org/10.1007/978-3-662-02838-4_12
Quantum algebra nearq=1 and a deformed symplectic structure
Shinji Iida and Hiroshi Kuratsuji Physical Review Letters 69 (13) 1833 (1992) https://doi.org/10.1103/PhysRevLett.69.1833
Total energy for fermions on a two-dimensional lattice in a magnetic field
Yong Tan and D. J. Thouless Physical Review B 46 (5) 2985 (1992) https://doi.org/10.1103/PhysRevB.46.2985
Analysis of the spectrum of a particle on a triangular lattice with two magnetic fluxes by algebraic and numerical methods
J Bellissard, C Kreft and R Seiler Journal of Physics A: Mathematical and General 24 (10) 2329 (1991) https://doi.org/10.1088/0305-4470/24/10/019
Response functions of a quantum fractal system: The Wannier-Azbel-Hofstadter problem
B. Douçot and P. C. E. Stamp Physical Review Letters 66 (19) 2503 (1991) https://doi.org/10.1103/PhysRevLett.66.2503