The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
B. Dreyfus , R. Maynard
J. Phys. France, 28 11-12 (1967) 955-966
This article has been cited by the following article(s):
27 articles
Thermal conductivity and scattering models for graphene: From intrinsic scattering of pristine graphene to strong extrinsic scattering of functionalized graphene
Byoung Seo Lee Applied Surface Science 497 143739 (2019) https://doi.org/10.1016/j.apsusc.2019.143739
Effect of phonon scattering by substitutional and structural defects on thermal conductivity of 2D graphene
Byoung Seo Lee Journal of Physics: Condensed Matter 30 (29) 295302 (2018) https://doi.org/10.1088/1361-648X/aacabe
Thermal conductivity of silicon carbide composites with highly oriented graphene nanoplatelets
Benito Román-Manso, Yoan Chevillotte, M. Isabel Osendi, Manuel Belmonte and Pilar Miranzo Journal of the European Ceramic Society 36 (16) 3987 (2016) https://doi.org/10.1016/j.jeurceramsoc.2016.06.016
Carbon‐based Solids and Materials
Carbon‐based Solids and Materials 169 (2013) https://doi.org/10.1002/9781118557617.ch6
Thermal conductivity of graphene and graphite
A. Alofi and G. P. Srivastava Physical Review B 87 (11) (2013) https://doi.org/10.1103/PhysRevB.87.115421
Increase in specific heat and possible hindered rotation of interstitialC2molecules in neutron-irradiated graphite
Tadao Iwata and Mitsuo Watanabe Physical Review B 81 (1) (2010) https://doi.org/10.1103/PhysRevB.81.014105
High Thermal Conductivity Materials
G.P. Srivastava High Thermal Conductivity Materials 1 (2006) https://doi.org/10.1007/0-387-25100-6_1
Temperature dependence of lattice vibrations and analysis of the specific heat of graphite
Takeshi Nihira and Tadao Iwata Physical Review B 68 (13) (2003) https://doi.org/10.1103/PhysRevB.68.134305
Advances in Cryogenic Engineering Materials
B. M. S. Rugaiganisa, S. Nishijima and T. Okada Advances in Cryogenic Engineering Materials 113 (1996) https://doi.org/10.1007/978-1-4757-9059-7_16
Graphite Intercalation Compounds II
Jean-Paul Issi Springer Series in Materials Science, Graphite Intercalation Compounds II 18 195 (1992) https://doi.org/10.1007/978-3-642-84479-9_6
Determination of lattice defects in carbon fibers by means of thermal-conductivity measurements
B. Nysten, J.-P. Issi, R. Barton, D. R. Boyington and J. G. Lavin Physical Review B 44 (5) 2142 (1991) https://doi.org/10.1103/PhysRevB.44.2142
Lattice thermal conductivity of layered-structure compounds
Anil Kumar, M. A. Ansari and B. K. Srivastava Physical Review B 31 (8) 5509 (1985) https://doi.org/10.1103/PhysRevB.31.5509
Thermoelectric power of graphite intercalation compounds
Ko Sugihara Physical Review B 28 (4) 2157 (1983) https://doi.org/10.1103/PhysRevB.28.2157
Electronic and lattice contributions to the thermal conductivity of graphite intercalation compounds
J. -P. Issi, J. Heremans and M. S. Dresselhaus Physical Review B 27 (2) 1333 (1983) https://doi.org/10.1103/PhysRevB.27.1333
Thermophysical Properties Research Literature Retrieval Guide 1900–1980
J. F. Chaney, V. Ramdas, C. R. Rodriguez and M. H. Wu Thermophysical Properties Research Literature Retrieval Guide 1900–1980 213 (1982) https://doi.org/10.1007/978-1-4757-1481-4_3
Thermal Transport in Intercalated Graphite
J-P. Issi MRS Proceedings 20 (1982) https://doi.org/10.1557/PROC-20-147
High-magnetic-field thermal-conductivity measurements in graphite intercalation compounds
J. Heremans, M. Shayegan, M. S. Dresselhaus and J -P. Issi Physical Review B 26 (6) 3338 (1982) https://doi.org/10.1103/PhysRevB.26.3338
Thermal conductivity of NbSe3 and TiSe2
M. Nùñez-Regueiro, C. Ayache and M. Locatelli Physica B+C 108 (1-3) 1035 (1981) https://doi.org/10.1016/0378-4363(81)90821-4
Thermal Conductivity of Electron-Irradiated Pyrolytic Graphite
Takeshi Nihira and Tadao Iwata Journal of the Physical Society of Japan 49 (5) 1916 (1980) https://doi.org/10.1143/JPSJ.49.1916
Restauration de la conductivité thermique d'un graphite pyrolytique irradié aux neutrons à basse température
A. de Combarieu Carbon 14 (6) 364 (1976) https://doi.org/10.1016/0008-6223(76)90012-9
Low-temperature magnetothermal conductivity of pyrolytic graphite
C. K. Chau and S. Y. Lu Journal of Low Temperature Physics 15 (5-6) 447 (1974) https://doi.org/10.1007/BF00654619
Anelastic relaxation peaks in graphites after neutron irradiation at low temperature
D. Rouby, P. F. Gobin and E. Bonjour Philosophical Magazine 29 (5) 983 (1974) https://doi.org/10.1080/14786437408226585
Thermoelectric power of electron-irradiated graphite at low temperatures
A. de Combarieu, J.P. Jay-Gerin and R. Maynard Journal of Physics and Chemistry of Solids 34 (2) 189 (1973) https://doi.org/10.1016/0022-3697(73)90076-0
Young's modulus and internal friction of graphite irradiated at low temperature
E. Bonjour, R. Le Diouron, G. Fiorese, D. Rouby and P. F. Gobin Radiation Effects 11 (3-4) 155 (1971) https://doi.org/10.1080/00337577108231101
Phonon drag in graphite
J. P. Jay-Gerin and R. Maynard Journal of Low Temperature Physics 3 (4) 377 (1970) https://doi.org/10.1007/BF01435281
The basal thermal conductivity of highly oriented pyrolytic graphite as a function of degree of graphitisation
B.T Kelly and K.E Gilchrist Carbon 7 (3) 355 (1969) https://doi.org/10.1016/0008-6223(69)90122-5
The thermal conductivity of fast neutron irradiated graphite
R. Taylor, B.T. Kelly and K.E. Gilchrist Journal of Physics and Chemistry of Solids 30 (9) 2251 (1969) https://doi.org/10.1016/0022-3697(69)90152-8