La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
M. Rubinstein , S. Zurek , T.C.B. McLeish , R.C. Ball
J. Phys. France, 51 8 (1990) 757-775
Citations de cet article :
49 articles
Scott Danielsen 17 (2025) https://doi.org/10.1016/B978-0-443-16168-1.00002-7
Long-Chain Branched Polypropylene: Effects of Chain Architecture, Melt Structure, Shear Modification, and Solution Treatment on Melt Relaxation Dynamics
Dietrich Gloger, Daniela Mileva, Andreas Albrecht, et al. Macromolecules 55 (7) 2588 (2022) https://doi.org/10.1021/acs.macromol.1c02113
Distribution Cutoff for Clusters near the Gel Point
Douglas T. Li, Paul E. Rudnicki and Jian Qin ACS Polymers Au 2 (5) 361 (2022) https://doi.org/10.1021/acspolymersau.2c00020
Molecular Characterization of Polymer Networks
Scott P. O. Danielsen, Haley K. Beech, Shu Wang, et al. Chemical Reviews 121 (8) 5042 (2021) https://doi.org/10.1021/acs.chemrev.0c01304
Reversible Gelation of Entangled Ionomers
Xiao Cao, Xinyue Yu, Jian Qin and Quan Chen Macromolecules 52 (22) 8771 (2019) https://doi.org/10.1021/acs.macromol.9b01116
Structure and Rheology of Molten Polymers
John M. Dealy, Daniel J. Read and Ronald G. Larson Structure and Rheology of Molten Polymers 461 (2018) https://doi.org/10.3139/9781569906125.011
Structure and Rheology of Molten Polymers
John M. Dealy and Ronald G. Larson Structure and Rheology of Molten Polymers 461 (2018) https://doi.org/10.1007/978-1-56990-612-5_11
Multiwave rheology and dynamic light scattering characterizations for a two-step sol-gel transition of tetraethoxysilane hydrolysis and condensation
Xingqun Zhu, Yongfei Yang, Zhou Zheng, Bin Xiang and Xudong Cui Journal of Sol-Gel Science and Technology 88 (1) 255 (2018) https://doi.org/10.1007/s10971-018-4788-6
Macromolecular topology and rheology: beyond the tube model
Dimitris Vlassopoulos Rheologica Acta 55 (8) 613 (2016) https://doi.org/10.1007/s00397-016-0948-1
Perspectives on the viscoelasticity and flow behavior of entangled linear and branched polymers
F Snijkers, R Pasquino, P D Olmsted and D Vlassopoulos Journal of Physics: Condensed Matter 27 (47) 473002 (2015) https://doi.org/10.1088/0953-8984/27/47/473002
From reactor to rheology in industrial polymers
Daniel J. Read Journal of Polymer Science Part B: Polymer Physics 53 (2) 123 (2015) https://doi.org/10.1002/polb.23551
Numerical prediction of nonlinear rheology of branched polymer melts
Chinmay Das, Daniel J. Read, Dietmar Auhl, et al. Journal of Rheology 58 (3) 737 (2014) https://doi.org/10.1122/1.4869485
A Novel Stochastic Approach for the Prediction of the Exact Topological Characteristics and Rheological Properties of Highly-Branched Polymer Chains
Dimitrios Meimaroglou and Costas Kiparissides Macromolecules 43 (13) 5820 (2010) https://doi.org/10.1021/ma1005233
Macromolecular Engineering
Thomas C. B. McLeish Macromolecular Engineering 1605 (2007) https://doi.org/10.1002/9783527631421.ch38
Entanglement Transition of Randomly Branched Polymers in the Hyperbranched Class
Suneel Kunamaneni, D. Martin A. Buzza, Daniel J. Read, et al. Macromolecules 39 (19) 6720 (2006) https://doi.org/10.1021/ma0603276
Dynamic scaling in entangled mean-field gelation polymers
Chinmay Das, Daniel J. Read, Mark A. Kelmanson and Tom C. B. McLeish Physical Review E 74 (1) (2006) https://doi.org/10.1103/PhysRevE.74.011404
An Evaluation of Dilution Rheology for the Characterization of Long Chain Branching of Polyethylenes
Choon K. Chai and Swe Chong Ang Applied Rheology 16 (2) 90 (2006) https://doi.org/10.1515/arh-2006-0006
Modeling of the linear viscoelastic behavior of low‐density polyethylene
P. Stanescu, J. C. Majesté and C. Carrot Journal of Polymer Science Part B: Polymer Physics 43 (15) 1973 (2005) https://doi.org/10.1002/polb.20477
Dynamics of gelling liquids: a short survey
Henning Löwe, Peter Müller and Annette Zippelius Journal of Physics: Condensed Matter 17 (20) S1659 (2005) https://doi.org/10.1088/0953-8984/17/20/002
Melt Rheology of Dendritically Branched Polystyrenes
John R. Dorgan, Daniel M. Knauss, Hasan A. Al-Muallem, Tianzi Huang and Dimitris Vlassopoulos Macromolecules 36 (2) 380 (2003) https://doi.org/10.1021/ma020612z
Critical behaviour of the Rouse model for gelling polymers
Peter Müller Journal of Physics A: Mathematical and General 36 (42) 10443 (2003) https://doi.org/10.1088/0305-4470/36/42/002
Influence of Entanglements on the Viscoelastic Relaxation of Polyurethane Melts and Gels
Ekatarina Gasilova, Lazhar Benyahia, Dominique Durand and Taco Nicolai Macromolecules 35 (1) 141 (2002) https://doi.org/10.1021/ma011412a
Characterization of long chain branching: Dilution rheology of industrial polyethylenes
B. J. Crosby, M. Mangnus, W. de Groot, R. Daniels and T. C. B. McLeish Journal of Rheology 46 (2) 401 (2002) https://doi.org/10.1122/1.1451083
Effect of Random End-Linking on the Viscoelastic Relaxation of Entangled Star Polymers
Erwan Nicol, Taco Nicolai and Dominique Durand Macromolecules 34 (15) 5205 (2001) https://doi.org/10.1021/ma002202l
Molecular Rheology and Statistics of Long Chain Branched Metallocene-Catalyzed Polyolefins
D. J. Read and T. C. B. McLeish Macromolecules 34 (6) 1928 (2001) https://doi.org/10.1021/ma001483u
Critical dynamics of gelation
Kurt Broderix, Henning Löwe, Peter Müller and Annette Zippelius Physical Review E 63 (1) (2000) https://doi.org/10.1103/PhysRevE.63.011510
Diagnosing long-chain branching in polyethylenes
J. Janzen and R.H. Colby Journal of Molecular Structure 485-486 569 (1999) https://doi.org/10.1016/S0022-2860(99)00097-6
Shear viscosity of a crosslinked polymer melt
K Broderix, H Löwe, P Müller and A Zippelius Europhysics Letters (EPL) 48 (4) 421 (1999) https://doi.org/10.1209/epl/i1999-00500-3
Branched Polymers II
Tom C. B. McLeish and Scott T. Milner Advances in Polymer Science, Branched Polymers II 143 195 (1999) https://doi.org/10.1007/3-540-49780-3_4
Dynamics of Entangled H-Polymers: Theory, Rheology, and Neutron-Scattering
T. C. B. McLeish, J. Allgaier, D. K. Bick, et al. Macromolecules 32 (20) 6734 (1999) https://doi.org/10.1021/ma990323j
Predicting low density polyethylene melt rheology in elongational and shear flows with “pom-pom” constitutive equations
N. J. Inkson, T. C. B. McLeish, O. G. Harlen and D. J. Groves Journal of Rheology 43 (4) 873 (1999) https://doi.org/10.1122/1.551036
Dynamic mechanical properties of linear and cross-linked polyurethane
Frederic Prochazka, Dominique Durand and Taco Nicolai Journal of Rheology 43 (6) 1511 (1999) https://doi.org/10.1122/1.551057
Viscoelasticity of randomly branched polymers in the vulcanization class
Charles P. Lusignan, Thomas H. Mourey, John C. Wilson and Ralph H. Colby Physical Review E 60 (5) 5657 (1999) https://doi.org/10.1103/PhysRevE.60.5657
Theoretical Challenges in the Dynamics of Complex Fluids
Tom McLeish Theoretical Challenges in the Dynamics of Complex Fluids 87 (1997) https://doi.org/10.1007/978-94-011-5480-2_7
Polymer architecture influence on rheology
Tom CB McLeish Current Opinion in Solid State and Materials Science 2 (6) 678 (1997) https://doi.org/10.1016/S1359-0286(97)80009-5
Topological Contributions to Nonlinear Elasticity in Branched Polymers
D. K. Bick and T. C. B. McLeish Physical Review Letters 76 (14) 2587 (1996) https://doi.org/10.1103/PhysRevLett.76.2587
Viscoelasticity of randomly branched polymers in the critical percolation class
Charles P. Lusignan, Thomas H. Mourey, John C. Wilson and Ralph H. Colby Physical Review E 52 (6) 6271 (1995) https://doi.org/10.1103/PhysRevE.52.6271
Rheological Fundamentals of Polymer Processing
Horst Henning Winter and Judy Jackson Rheological Fundamentals of Polymer Processing 61 (1995) https://doi.org/10.1007/978-94-015-8571-2_3
The occurrence of self-similar relaxation in polymers
Horst Henning Winter Journal of Non-Crystalline Solids 172-174 1158 (1994) https://doi.org/10.1016/0022-3093(94)90638-6
Dynamics of cross-linked polymers
A Lapp, M Daoud, G Jannink and B Farago Journal of Non-Crystalline Solids 172-174 862 (1994) https://doi.org/10.1016/0022-3093(94)90590-8
The gel and rheological behaviour of radiation-crosslinked linear low-density polyethylene
P.J. Halley and M.E. Mackay Polymer 35 (10) 2186 (1994) https://doi.org/10.1016/0032-3861(94)90248-8
Dynamics of near-critical polymer gels
Ralph H. Colby, Jeffrey R. Gillmor and Michael Rubinstein Physical Review E 48 (5) 3712 (1993) https://doi.org/10.1103/PhysRevE.48.3712
Rheology of star-linear polymer blends: molecular tube models
T.C.B. McLeish and K.P. O'Connor Polymer 34 (14) 2998 (1993) https://doi.org/10.1016/0032-3861(93)90626-L
Molecular weight distributions from viscoelastic parameters in polymeric sols as the reaction proceeds
J Llorens Journal of Non-Crystalline Solids 162 (1-2) 188 (1993) https://doi.org/10.1016/0022-3093(93)90755-M
The Monte Carlo Method in Condensed Matter Physics
Artur Baumgärtner Topics in Applied Physics, The Monte Carlo Method in Condensed Matter Physics 71 285 (1992) https://doi.org/10.1007/978-3-662-02855-1_9
Molecular tube models of branched polymer melts
T.C.B. McLeish and K. P. O'Connor Makromolekulare Chemie. Macromolecular Symposia 56 (1) 127 (1992) https://doi.org/10.1002/masy.19920560114
The Monte Carlo Method in Condensed Matter Physics
Artur Baumgärtner Topics in Applied Physics, The Monte Carlo Method in Condensed Matter Physics 71 285 (1992) https://doi.org/10.1007/3-540-60174-0_9
Relaxation behaviour of highly polydisperse polymer melts
T.C.B. McLeish Polymer 33 (13) 2852 (1992) https://doi.org/10.1016/0032-3861(92)90464-8
Polymer Gels, Materials That Combine Liquid and Solid Properties
H. Henning Winter MRS Bulletin 16 (8) 44 (1991) https://doi.org/10.1557/S0883769400056347