La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
J.F. Fontanari
J. Phys. France, 51 21 (1990) 2421-2430
Citations de cet article :
36 articles
Hebbian dreaming for small datasets
Elena Agliari, Francesco Alemanno, Miriam Aquaro, Adriano Barra, Fabrizio Durante and Ido Kanter Neural Networks 173 106174 (2024) https://doi.org/10.1016/j.neunet.2024.106174
Regularization, early-stopping and dreaming: A Hopfield-like setup to address generalization and overfitting
E. Agliari, F. Alemanno, M. Aquaro and A. Fachechi Neural Networks 177 106389 (2024) https://doi.org/10.1016/j.neunet.2024.106389
Distinguishing examples while building concepts in hippocampal and artificial networks
Louis Kang and Taro Toyoizumi Nature Communications 15 (1) (2024) https://doi.org/10.1038/s41467-024-44877-0
A spectral approach to Hebbian-like neural networks
Elena Agliari, Alberto Fachechi and Domenico Luongo Applied Mathematics and Computation 474 128689 (2024) https://doi.org/10.1016/j.amc.2024.128689
Supervised Hebbian learning
Francesco Alemanno, Miriam Aquaro, Ido Kanter, Adriano Barra and Elena Agliari Europhysics Letters 141 (1) 11001 (2023) https://doi.org/10.1209/0295-5075/aca55f
Parallel learning by multitasking neural networks
Elena Agliari, Andrea Alessandrelli, Adriano Barra and Federico Ricci-Tersenghi Journal of Statistical Mechanics: Theory and Experiment 2023 (11) 113401 (2023) https://doi.org/10.1088/1742-5468/ad0a86
Hopfield-like network with complementary encodings of memories
Louis Kang and Taro Toyoizumi Physical Review E 108 (5) (2023) https://doi.org/10.1103/PhysRevE.108.054410
Louis Kang and Taro Toyoizumi (2023) https://doi.org/10.1101/2023.02.21.529365
The emergence of a concept in shallow neural networks
Elena Agliari, Francesco Alemanno, Adriano Barra and Giordano De Marzo Neural Networks 148 232 (2022) https://doi.org/10.1016/j.neunet.2022.01.017
Learning and Organization of Memory for Evolving Patterns
Oskar H. Schnaack, Luca Peliti and Armita Nourmohammad Physical Review X 12 (2) (2022) https://doi.org/10.1103/PhysRevX.12.021063
External Stimuli on Neural Networks: Analytical and Numerical Approaches
Evaldo M. F. Curado, Nilo B. Melgar and Fernando D. Nobre Entropy 23 (8) 1034 (2021) https://doi.org/10.3390/e23081034
Weinan Sun, Madhu Advani, Nelson Spruston, Andrew Saxe and James E. Fitzgerald (2021) https://doi.org/10.1101/2021.10.13.463791
Evolutionary Connectionism: Algorithmic Principles Underlying the Evolution of Biological Organisation in Evo-Devo, Evo-Eco and Evolutionary Transitions
Richard A. Watson, Rob Mills, C. L. Buckley, et al. Evolutionary Biology 43 (4) 553 (2016) https://doi.org/10.1007/s11692-015-9358-z
Taxonomical Associative Memory
Diogo Rendeiro, João Sacramento and Andreas Wichert Cognitive Computation 6 (1) 45 (2014) https://doi.org/10.1007/s12559-012-9198-4
Optimization in “self-modeling” complex adaptive systems
Richard A. Watson, C. L. Buckley and Rob Mills Complexity 16 (5) 17 (2011) https://doi.org/10.1002/cplx.20346
Transformations in the scale of behavior and the global optimization of constraints in adaptive networks
Richard A Watson, Rob Mills and C.L. Buckley Adaptive Behavior 19 (4) 227 (2011) https://doi.org/10.1177/1059712311412797
Layered neural networks with non-monotonic transfer functions
Katsuki Katayama, Yasuo Sakata and Tsuyoshi Horiguchi Physica A: Statistical Mechanics and its Applications 317 (1-2) 270 (2003) https://doi.org/10.1016/S0378-4371(02)01319-5
Two-level hierarchy with sparsely and temporally coded patterns and its possible functional role in information processing
Masaki Nomura, Toshio Aoyagi and Masato Okada Neural Networks 16 (7) 947 (2003) https://doi.org/10.1016/S0893-6080(02)00239-3
Categorization ability in a biologically motivated neural network
Criso’ogono R. da Silva Physica A: Statistical Mechanics and its Applications 301 (1-4) 362 (2001) https://doi.org/10.1016/S0378-4371(01)00420-4
L.B. Litinskii 1 65 (2001) https://doi.org/10.1109/IJCNN.2001.938993
Magnetic order and categorization in attractor neural networks
W.K Theumann and R Erichsen Journal of Magnetism and Magnetic Materials 226-230 560 (2001) https://doi.org/10.1016/S0304-8853(00)00922-7
Bistability of mixed states in a neural network storing hierarchical patterns
Kaname Toya, Kunihiko Fukushima, Yoshiyuki Kabashima and Masato Okada Journal of Physics A: Mathematical and General 33 (14) 2725 (2000) https://doi.org/10.1088/0305-4470/33/14/308
Soft Computing in Industrial Applications
Takayuki Shirakura, Hidemi Fukada and Koichi Shindo Soft Computing in Industrial Applications 151 (2000) https://doi.org/10.1007/978-1-4471-0509-1_13
Categorization in a Hopfield network trained with weighted examples: Extensive number of concepts
Rogério L. Costa and Alba Theumann Physical Review E 61 (5) 4860 (2000) https://doi.org/10.1103/PhysRevE.61.4860
Generalization Ability of Hopfield Neural Network with Spin-S Ising Neurons
Katsuki Katayama and Tsuyoshi Horiguchi Journal of the Physical Society of Japan 69 (9) 2816 (2000) https://doi.org/10.1143/JPSJ.69.2816
Categorization in fully connected multistate neural network models
R. Erichsen, W. K. Theumann and D. R. C. Dominguez Physical Review E 60 (6) 7321 (1999) https://doi.org/10.1103/PhysRevE.60.7321
Categorization in the symmetrically dilute Hopfield network
P. R. Krebs and W. K. Theumann Physical Review E 60 (4) 4580 (1999) https://doi.org/10.1103/PhysRevE.60.4580
Categorization in a Hopfield network trained with weighted examples. (I). Finite number of concepts
Rogério L. Costa and Alba Theumann Physica A: Statistical Mechanics and its Applications 268 (3-4) 499 (1999) https://doi.org/10.1016/S0378-4371(99)00043-6
Categorization in the pseudo-inverse neural network
C Rodrigues Neto and J F Fontanari Journal of Physics A: Mathematical and General 31 (2) 531 (1998) https://doi.org/10.1088/0305-4470/31/2/013
Categorization in a layered neural network
J.A. Martins and W.K. Theumann Physica A: Statistical Mechanics and its Applications 253 (1-4) 38 (1998) https://doi.org/10.1016/S0378-4371(97)00689-4
Information capacity of a hierarchical neural network
David Renato Carreta Dominguez Physical Review E 58 (4) 4811 (1998) https://doi.org/10.1103/PhysRevE.58.4811
Generalization and chaos in a layered neural network
David R C Dominguez and W K Theumann Journal of Physics A: Mathematical and General 30 (5) 1403 (1997) https://doi.org/10.1088/0305-4470/30/5/011
Categorization by a three-state attractor neural network
D. R. C. Dominguez and D. Bollé Physical Review E 56 (6) 7306 (1997) https://doi.org/10.1103/PhysRevE.56.7306
Generalization in a multi-state neural network
D R C Dominguez and W K Theumann Journal of Physics A: Mathematical and General 29 (4) 749 (1996) https://doi.org/10.1088/0305-4470/29/4/006
Generalization in a Hopfield network with noise
P R Krebs and W K Theumann Journal of Physics A: Mathematical and General 26 (16) 3983 (1993) https://doi.org/10.1088/0305-4470/26/16/015
Generalization in an analog neural network
D. A. Stariolo and F. A. Tamarit Physical Review A 46 (8) 5249 (1992) https://doi.org/10.1103/PhysRevA.46.5249