La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Patrice Hello , Jean-Yves Vinet
J. Phys. France, 51 12 (1990) 1267-1282
Citations de cet article :
62 articles
Commissioning of ThomX Compton source subsystems and demonstration of
1010
x-rays/s
Muath Alkadi, Manuel Alves, Manar Amer, Loic Amoudry, Didier Auguste, Jean-Luc Babigeon, Michel Baltazar, Alain Benoit, Alexandre Blin, Marco Bonanzingamarco, Jean Bonenfant, Julien Bonis, Jean-Pierre Brasile, Kevin Cassou, Jean-Noël Cayla, Thomas Chabaud, Iryna Chaikovska, Sophie Chance, Vincent Chaumat, Ronic Chiche, Patrick Cornebise, Olivier Dalifard, Nicolas Delerue, Remy Dorkel, Denis Douillet, et al . Physical Review Accelerators and Beams 28 (2) (2025) https://doi.org/10.1103/PhysRevAccelBeams.28.023401
Effect of absorption of laser light in mirrors on Fabry-Pérot based refractometry
Johan Zakrisson, Isak Silander, André Kussike, Tom Rubin, Martin Zelan and Ove Axner Optics Express 32 (14) 24656 (2024) https://doi.org/10.1364/OE.528261
710 kW stable average power in a 45,000 finesse two-mirror optical cavity
Xin-Yi Lu, Ronic Chiche, Kevin Dupraz, Aurélien Martens, Daniele Nutarelli, Viktor Soskov, Fabian Zomer, Xing Liu, Li-Xin Yan, Wen-Hui Huang, Chuan-Xiang Tang, Christophe Michel, Laurent Pinard and Jérôme Lhermite Optics Letters 49 (23) 6884 (2024) https://doi.org/10.1364/OL.543388
Storage Ring-Based Inverse Compton X-ray Sources
Benedikt Sebastian Günther Springer Theses, Storage Ring-Based Inverse Compton X-ray Sources 149 (2023) https://doi.org/10.1007/978-3-031-17742-2_7
Squeezing for cosmic symphony
Mengyao Wang and Fan Zhang AAPPS Bulletin 33 (1) (2023) https://doi.org/10.1007/s43673-023-00076-5
Probing dark matter with polarimetry techniques
A. Ejlli, S. M. Vermeulen, E. Schwartz, L. Aiello and H. Grote Physical Review D 107 (8) (2023) https://doi.org/10.1103/PhysRevD.107.083035
Detecting Gravitational Waves with Advanced Virgo
Ilaria Nardecchia Galaxies 10 (1) 28 (2022) https://doi.org/10.3390/galaxies10010028
Thermal lensing: outside of the lasing medium
Krzysztof Dobek Applied Physics B 128 (2) (2022) https://doi.org/10.1007/s00340-021-07718-2
Scaling potential of beam-splitter-based coherent beam combination
Michael Müller, Christopher Aleshire, Joachim Buldt, et al. Optics Express 29 (17) 27900 (2021) https://doi.org/10.1364/OE.433596
Thermal aberrations and structured light I: analytical model for structured pumps and probes
Stirling Scholes and Andrew Forbes Applied Physics B 127 (8) (2021) https://doi.org/10.1007/s00340-021-07657-y
Point absorbers in Advanced LIGO
Aidan F. Brooks, Gabriele Vajente, Hiro Yamamoto, et al. Applied Optics 60 (13) 4047 (2021) https://doi.org/10.1364/AO.419689
Feasibility study of beam-expanding telescopes in the interferometer arms for the Einstein Telescope
Samuel Rowlinson, Artemiy Dmitriev, Aaron W. Jones, Teng Zhang and Andreas Freise Physical Review D 103 (2) (2021) https://doi.org/10.1103/PhysRevD.103.023004
Modeling, experimental validation, and model order reduction of mirror thermal dynamics
Aleksandar Haber, John E. Draganov, Kevin Heesh, Jorge Cadena and Michael Krainak Optics Express 29 (15) 24508 (2021) https://doi.org/10.1364/OE.433172
Point Absorber Limits to Future Gravitational-Wave Detectors
Wenxuan Jia, Hiroaki Yamamoto, Kevin Kuns, et al. Physical Review Letters 127 (24) (2021) https://doi.org/10.1103/PhysRevLett.127.241102
Prior-damage dynamics in a high-finesse optical enhancement cavity
Huan Wang, Loïc Amoudry, Kevin Cassou, et al. Applied Optics 59 (35) 10995 (2020) https://doi.org/10.1364/AO.410407
Characterization of Absorption Losses and Transient Thermo-Optic Effects in a High-Power Laser System
Lukasz Gorajek, Przemyslaw Gontar, Jan Jabczynski, Jozef Firak, Marek Stefaniak, Miroslaw Dabrowski, Tomasz Orzanowski, Piotr Trzaskawka, Tomasz Sosnowski, Krzysztof Firmanty, Marcin Miczuga, Jaroslaw Barela and Krzysztof Kopczynski Photonics 7 (4) 94 (2020) https://doi.org/10.3390/photonics7040094
The ThomX ICS source
Kevin Dupraz, Muath Alkadi, Manuel Alves, et al. Physics Open 100051 (2020) https://doi.org/10.1016/j.physo.2020.100051
Modal instability suppression in a high-average-power and high-finesse Fabry–Perot cavity
Loïc Amoudry, Huan Wang, Kevin Cassou, et al. Applied Optics 59 (1) 116 (2020) https://doi.org/10.1364/AO.59.000116
Influence of Young’s modulus temperature dependence on parametric instability in Advanced LIGO interferometer
S.E. Strigin Physics Open 5 100035 (2020) https://doi.org/10.1016/j.physo.2020.100035
Advances In Atomic, Molecular, and Optical Physics
Gabriele Vajente, Eric K. Gustafson and David H. Reitze Advances In Atomic, Molecular, and Optical Physics 68 75 (2019) https://doi.org/10.1016/bs.aamop.2019.04.002
Realization of a high power optical trapping setup free from thermal lensing effects
C. Simonelli, E. Neri, A. Ciamei, et al. Optics Express 27 (19) 27215 (2019) https://doi.org/10.1364/OE.27.027215
Enhancement Cavities for the Generation of Extreme Ultraviolet and Hard X-Ray Radiation
Henning Carstens Springer Theses, Enhancement Cavities for the Generation of Extreme Ultraviolet and Hard X-Ray Radiation 7 (2018) https://doi.org/10.1007/978-3-319-94009-0_2
Loic Amoudry, Kevin Cassou, Kevin Dupraz, Aurelien Martens, Hugues Monard, Fabian Zomer, Pierre Favier, Giovanni Pareschi and Ali M. Khounsary 17 (2017) https://doi.org/10.1117/12.2280921
Interferometer techniques for gravitational-wave detection
Charlotte Bond, Daniel Brown, Andreas Freise and Kenneth A. Strain Living Reviews in Relativity 19 (1) (2016) https://doi.org/10.1007/s41114-016-0002-8
Overview of Advanced LIGO adaptive optics
Aidan F. Brooks, Benjamin Abbott, Muzammil A. Arain, et al. Applied Optics 55 (29) 8256 (2016) https://doi.org/10.1364/AO.55.008256
Analytical model for ring heater thermal compensation in the Advanced Laser Interferometer Gravitational-wave Observatory
Joshua Ramette, Marie Kasprzack, Aidan Brooks, et al. Applied Optics 55 (10) 2619 (2016) https://doi.org/10.1364/AO.55.002619
Modeling thermoelastic distortion of optics using elastodynamic reciprocity
Eleanor King, Yuri Levin, David Ottaway and Peter Veitch Physical Review D 92 (2) (2015) https://doi.org/10.1103/PhysRevD.92.022005
Novel technique for thermal lens measurement in commonly used optical components
Christina Bogan, Patrick Kwee, Stefan Hild, Sabina H. Huttner and Benno Willke Optics Express 23 (12) 15380 (2015) https://doi.org/10.1364/OE.23.015380
Gravitational wave astronomy: the current status
David Blair, Li Ju, ChunNong Zhao, et al. Science China Physics, Mechanics & Astronomy 58 (12) (2015) https://doi.org/10.1007/s11433-015-5748-6
Temperature and heat flux fast estimation during rolling process
Daniel Weisz-Patrault, Alain Ehrlacher and Nicolas Legrand International Journal of Thermal Sciences 75 1 (2014) https://doi.org/10.1016/j.ijthermalsci.2013.07.010
Gravitational radiation detection with laser interferometry
Rana X. Adhikari Reviews of Modern Physics 86 (1) 121 (2014) https://doi.org/10.1103/RevModPhys.86.121
Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams
Marie Kasprzack, Benjamin Canuel, Fabien Cavalier, et al. Applied Optics 52 (12) 2909 (2013) https://doi.org/10.1364/AO.52.002909
Trade-off between quantum and thermal fluctuations in mirror coatings yields improved sensitivity of gravitational-wave interferometers
N. V. Voronchev, S. L. Danilishin and F. Ya. Khalili Physical Review D 86 (12) (2012) https://doi.org/10.1103/PhysRevD.86.122003
Measurement of thermo-elastic deformation of an optic using a polarization-based shearing interferometer
Peter Beyersdorf and Mark Cordier Applied Optics 51 (31) 7426 (2012) https://doi.org/10.1364/AO.51.007426
Photothermal self-phase-modulation technique for absorption measurements on high-reflective coatings
Jessica Steinlechner, Lars Jensen, Christoph Krüger, et al. Applied Optics 51 (8) 1156 (2012) https://doi.org/10.1364/AO.51.001156
Wavefront aberration compensation with a thermally deformable mirror
B Canuel, R Day, E Genin, P La Penna and J Marque Classical and Quantum Gravity 29 (8) 085012 (2012) https://doi.org/10.1088/0264-9381/29/8/085012
Invited Review Article: Interferometric gravity wave detectors
G. Cella and A. Giazotto Review of Scientific Instruments 82 (10) (2011) https://doi.org/10.1063/1.3652857
Measuring small absorptions by exploiting photothermal self-phase modulation
Nico Lastzka, Jessica Steinlechner, Sebastian Steinlechner and Roman Schnabel Applied Optics 49 (28) 5391 (2010) https://doi.org/10.1364/AO.49.005391
Adaptive control of modal properties of optical beams using photothermal effects
Muzammil A. Arain, William Z. Korth, Luke F. Williams, et al. Optics Express 18 (3) 2767 (2010) https://doi.org/10.1364/OE.18.002767
Direct measurement of absorption-induced wavefront distortion in high optical power systems
Aidan F. Brooks, David Hosken, Jesper Munch, et al. Applied Optics 48 (2) 355 (2009) https://doi.org/10.1364/AO.48.000355
Detailed design of a resonantly enhanced axion-photon regeneration experiment
Guido Mueller, Pierre Sikivie, D. B. Tanner and Karl van Bibber Physical Review D 80 (7) (2009) https://doi.org/10.1103/PhysRevD.80.072004
On Special Optical Modes and Thermal Issues in Advanced Gravitational Wave Interferometric Detectors
Jean-Yves Vinet Living Reviews in Relativity 12 (1) (2009) https://doi.org/10.12942/lrr-2009-5
Directional radiative cooling thermal compensation for gravitational wave interferometer mirrors
Carl Justin Kamp, Hinata Kawamura, Roberto Passaquieti and Riccardo DeSalvo Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 607 (3) 530 (2009) https://doi.org/10.1016/j.nima.2009.06.044
Wavefront distortion of the reflected and diffracted beams produced by the thermoelastic deformation of a diffraction grating heated by a Gaussian laser beam
Patrick P. Lu, Amber L. Bullington, Peter Beyersdorf, et al. Journal of the Optical Society of America A 24 (3) 659 (2007) https://doi.org/10.1364/JOSAA.24.000659
Adaptive beam shaping by controlled thermal lensing in optical elements
Muzammil A. Arain, Volker Quetschke, Joseph Gleason, et al. Applied Optics 46 (12) 2153 (2007) https://doi.org/10.1364/AO.46.002153
Reducing thermal effects in mirrors of advanced gravitational wave interferometric detectors
Jean-Yves Vinet Classical and Quantum Gravity 24 (15) 3897 (2007) https://doi.org/10.1088/0264-9381/24/15/008
Compensation of Strong Thermal Lensing in High-Optical-Power Cavities
C. Zhao, J. Degallaix, L. Ju, et al. Physical Review Letters 96 (23) (2006) https://doi.org/10.1103/PhysRevLett.96.231101
In situ measurement of absorption in high-power interferometers by using beam diameter measurements
David Ottaway, Joseph Betzwieser, Stefan Ballmer, Sam Waldman and William Kells Optics Letters 31 (4) 450 (2006) https://doi.org/10.1364/OL.31.000450
Self-Compensation of Astigmatism in Mode-Cleaners for Advanced Interferometers
P Barriga, Chunnong Zhao, Li Ju and David G Blair Journal of Physics: Conference Series 32 457 (2006) https://doi.org/10.1088/1742-6596/32/1/070
An off-axis Hartmann sensor for the measurement of absorption-induced wavefront distortion in advanced gravitational wave interferometers
Aidan Brooks, Peter Veitch, Jesper Munch and Thu-Lan Kelly General Relativity and Gravitation 37 (9) 1575 (2005) https://doi.org/10.1007/s10714-005-0137-5
Active correction of thermal lensing through external radiative thermal actuation
Ryan Lawrence, David Ottaway, Michael Zucker and Peter Fritschel Optics Letters 29 (22) 2635 (2004) https://doi.org/10.1364/OL.29.002635
Simulation of bulk-absorption thermal lensing in transmissive optics of gravitational waves detectors
J. Degallaix, C. Zhao, L. Ju and D. Blair Applied Physics B 77 (4) 409 (2003) https://doi.org/10.1007/s00340-003-1261-0
Model of thermal wave-front distortion in interferometric gravitational-wave detectors I Thermal focusing
Raymond G. Beausoleil, Eric K. Gustafson, Martin M. Fejer, et al. Journal of the Optical Society of America B 20 (6) 1247 (2003) https://doi.org/10.1364/JOSAB.20.001247
Thermal lensing in cryogenic sapphire substrates
Takayuki Tomaru, Toshikazu Suzuki, Shinji Miyoki, et al. Classical and Quantum Gravity 19 (7) 2045 (2002) https://doi.org/10.1088/0264-9381/19/7/412
Cryogenic measurement of the optical absorption coefficient in sapphire crystals at 1.064 μm for the large-scale cryogenic gravitational wave telescope
Takayuki Tomaru, Takashi Uchiyama, Daisuke Tatsumi, et al. Physics Letters A 283 (1-2) 80 (2001) https://doi.org/10.1016/S0375-9601(01)00191-8
Detection of gravitational waves
L Ju, D G Blair and C Zhao Reports on Progress in Physics 63 (9) 1317 (2000) https://doi.org/10.1088/0034-4885/63/9/201
The Universe
S. V. Dhurandhar Astrophysics and Space Science Library, The Universe 244 111 (2000) https://doi.org/10.1007/978-94-011-4050-8_11
Polarization Sagnac interferometer with a reflective grating beam splitter
S. Traeger, P. Beyersdorf, L. Goddard, et al. Optics Letters 25 (10) 722 (2000) https://doi.org/10.1364/OL.25.000722
Progress in Optics
Patrice Hello Progress in Optics 38 85 (1998) https://doi.org/10.1016/S0079-6638(08)70350-0
Noise induced by laser power fluctuations via absorption asymmetry in gravitational-wave interferometric detectors
P. Hello and J.-Y. Vinet Physics Letters A 230 (1-2) 12 (1997) https://doi.org/10.1016/S0375-9601(97)00222-3
Stability of giant Fabry–Perot cavities of interferometric gravitational-wave detectors
S. V. Dhurandhar, P. Hello, B. S. Sathyaprakash and J.-Y. Vinet Applied Optics 36 (22) 5325 (1997) https://doi.org/10.1364/AO.36.005325
Simulation of thermal effects in interferometric gravitational-wave detectors
Patrice Hello and Jean-Yves Vinet Physics Letters A 178 (5-6) 351 (1993) https://doi.org/10.1016/0375-9601(93)90860-3