La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
P. Grassberger , S.S. Manna
J. Phys. France, 51 11 (1990) 1077-1098
Citations de cet article :
149 articles | Pages :
An efficient, multi-scale neighbourhood index to quantify wildfire likelihood
Douglas A. G. Radford, Holger R. Maier, Hedwig van Delden, Aaron C. Zecchin and Amelie Jeanneau International Journal of Wildland Fire 33 (5) (2024) https://doi.org/10.1071/WF23055
Sandpiles subjected to sinusoidal drive
J. Cheraghalizadeh, M. A. Seifi MirJafarlou and M. N. Najafi Physical Review E 107 (6) (2023) https://doi.org/10.1103/PhysRevE.107.064132
Self-organized quantization and oscillations on continuous fixed-energy sandpiles
Jakob Niehues, Gorm Gruner Jensen and Jan O. Haerter Physical Review E 105 (3) (2022) https://doi.org/10.1103/PhysRevE.105.034314
Feedback Mechanisms for Self-Organization to the Edge of a Phase Transition
Victor Buendía, Serena di Santo, Juan A. Bonachela and Miguel A. Muñoz Frontiers in Physics 8 (2020) https://doi.org/10.3389/fphy.2020.00333
Critical properties of deterministic and stochastic sandpile models on two-dimensional percolation backbone
Himangsu Bhaumik and S.B. Santra Physica A: Statistical Mechanics and its Applications 548 124318 (2020) https://doi.org/10.1016/j.physa.2020.124318
Toppling and height probabilities in sandpiles
Antal A Járai and Minwei Sun Journal of Statistical Mechanics: Theory and Experiment 2019 (11) 113204 (2019) https://doi.org/10.1088/1742-5468/ab2ccb
Bak-Tang-Wiesenfeld model in the upper critical dimension: Induced criticality in lower-dimensional subsystems
H. Dashti-Naserabadi and M. N. Najafi Physical Review E 96 (4) (2017) https://doi.org/10.1103/PhysRevE.96.042115
Oslo model, hyperuniformity, and the quenched Edwards-Wilkinson model
Peter Grassberger, Deepak Dhar and P. K. Mohanty Physical Review E 94 (4) (2016) https://doi.org/10.1103/PhysRevE.94.042314
Percolation mechanism drives actin gels to the critically connected state
Chiu Fan Lee and Gunnar Pruessner Physical Review E 93 (5) (2016) https://doi.org/10.1103/PhysRevE.93.052414
25 Years of Self-organized Criticality: Concepts and Controversies
Nicholas W. Watkins, Gunnar Pruessner, Sandra C. Chapman, Norma B. Crosby and Henrik J. Jensen Space Science Reviews 198 (1-4) 3 (2016) https://doi.org/10.1007/s11214-015-0155-x
Global fire size distribution is driven by human impact and climate
Stijn Hantson, Salvador Pueyo and Emilio Chuvieco Global Ecology and Biogeography 24 (1) 77 (2015) https://doi.org/10.1111/geb.12246
Crossover from rotational to stochastic sandpile universality in the random rotational sandpile model
Himangsu Bhaumik, Jahir Abbas Ahmed and S. B. Santra Physical Review E 90 (6) (2014) https://doi.org/10.1103/PhysRevE.90.062136
Usage leading to an abrupt collapse of connectivity
D. V. Stäger, N. A. M. Araújo and H. J. Herrmann Physical Review E 90 (4) (2014) https://doi.org/10.1103/PhysRevE.90.042148
Self-organised criticality in stochastic sandpiles: Connection to directed percolation
Urna Basu and P. K. Mohanty EPL (Europhysics Letters) 108 (6) 60002 (2014) https://doi.org/10.1209/0295-5075/108/60002
Critical properties of a dissipative sandpile model on small-world networks
Himangsu Bhaumik and S. B. Santra Physical Review E 88 (6) (2013) https://doi.org/10.1103/PhysRevE.88.062817
Height probabilities in the Abelian sandpile model on the generalized finite Bethe lattice
Haiyan Chen and Fuji Zhang Journal of Mathematical Physics 54 (8) (2013) https://doi.org/10.1063/1.4817089
Exact integration of height probabilities in the Abelian Sandpile model
Sergio Caracciolo and Andrea Sportiello Journal of Statistical Mechanics: Theory and Experiment 2012 (09) P09013 (2012) https://doi.org/10.1088/1742-5468/2012/09/P09013
Sandpiles on multiplex networks
Kyu-Min Lee, K. -I. Goh and I. -M. Kim Journal of the Korean Physical Society 60 (4) 641 (2012) https://doi.org/10.3938/jkps.60.641
Finite size scaling in BTW like sandpile models
J. A. Ahmed and S. B. Santra The European Physical Journal B 76 (1) 13 (2010) https://doi.org/10.1140/epjb/e2010-00198-x
Driving Sandpiles to Criticality and Beyond
Anne Fey, Lionel Levine and David B. Wilson Physical Review Letters 104 (14) (2010) https://doi.org/10.1103/PhysRevLett.104.145703
The Abelian sandpile model on the honeycomb lattice
N Azimi-Tafreshi, H Dashti-Naserabadi, S Moghimi-Araghi and P Ruelle Journal of Statistical Mechanics: Theory and Experiment 2010 (02) P02004 (2010) https://doi.org/10.1088/1742-5468/2010/02/P02004
Approach to criticality in sandpiles
Anne Fey, Lionel Levine and David B. Wilson Physical Review E 82 (3) (2010) https://doi.org/10.1103/PhysRevE.82.031121
Comment on “Driving Sandpiles to Criticality and Beyond”
Hang-Hyun Jo and Hyeong-Chai Jeong Physical Review Letters 105 (1) (2010) https://doi.org/10.1103/PhysRevLett.105.019601
A dissipative deterministic BTW model with an activation scenario of strong events
A. B. Shapoval and M. G. Shnirman Izvestiya, Physics of the Solid Earth 45 (5) 414 (2009) https://doi.org/10.1134/S106935130905005X
Renormalization group and instantons in stochastic nonlinear dynamics
D. Volchenkov The European Physical Journal Special Topics 170 (1) 1 (2009) https://doi.org/10.1140/epjst/e2009-01001-3
Prediction efficiency in an avalanche model for different target events
A. B. Shapoval and M. G. Shnirman Izvestiya, Physics of the Solid Earth 44 (6) 495 (2008) https://doi.org/10.1134/S1069351308060050
Confirming and extending the hypothesis of universality in sandpiles
Juan A. Bonachela and Miguel A. Muñoz Physical Review E 78 (4) (2008) https://doi.org/10.1103/PhysRevE.78.041102
SAND DENSITY AS SANDPILE DESCRIPTOR
A. B. SHAPOVAL and M. G. SHNIRMAN International Journal of Modern Physics C 19 (06) 995 (2008) https://doi.org/10.1142/S0129183108012637
The Ising model in a Bak–Tang–Wiesenfeld sandpile
Zbigniew Koza and Marcel Ausloos Physica A: Statistical Mechanics and its Applications 375 (1) 199 (2007) https://doi.org/10.1016/j.physa.2006.08.074
Randomness and a step-like distribution of pile heights in avalanche models
A. B. Shapoval and M. G. Shnirman The European Physical Journal B 59 (3) 399 (2007) https://doi.org/10.1140/epjb/e2007-00293-1
Characteristics of deterministic and stochastic sandpile models in a rotational sandpile model
S. B. Santra, S. Ranjita Chanu and Debabrata Deb Physical Review E 75 (4) (2007) https://doi.org/10.1103/PhysRevE.75.041122
Dissipative sandpile models with universal exponents
Ofer Malcai, Yehiel Shilo and Ofer Biham Physical Review E 73 (5) (2006) https://doi.org/10.1103/PhysRevE.73.056125
Exact Solution of the One-Dimensional Deterministic Fixed-Energy Sandpile
Luca Dall’Asta Physical Review Letters 96 (5) (2006) https://doi.org/10.1103/PhysRevLett.96.058003
Sticky grains do not change the universality class of isotropic sandpiles
Juan A. Bonachela, José J. Ramasco, Hugues Chaté, Ivan Dornic and Miguel A. Muñoz Physical Review E 74 (5) (2006) https://doi.org/10.1103/PhysRevE.74.050102
HOW SIZE OF TARGET AVALANCHES INFLUENCES PREDICTION EFFICIENCY
A. B. SHAPOVAL and M. G. SHNIRMAN International Journal of Modern Physics C 17 (12) 1777 (2006) https://doi.org/10.1142/S0129183106010212
CROSSOVER PHENOMENON AND UNIVERSALITY: FROM RANDOM WALK TO DETERMINISTIC SAND-PILES THROUGH RANDOM SAND-PILES
A. B. SHAPOVAL and M. G. SHNIRMAN International Journal of Modern Physics C 16 (12) 1893 (2005) https://doi.org/10.1142/S0129183105008412
Sandpile model on a quenched substrate generated by kinetic self-avoiding trails
R. Karmakar and S. S. Manna Physical Review E 71 (1) (2005) https://doi.org/10.1103/PhysRevE.71.015101
SCALING PROPERTIES OF STRONG AVALANCHES IN SAND-PILE
A. B. SHAPOVAL and M. G. SHNIRMAN International Journal of Modern Physics C 16 (02) 341 (2005) https://doi.org/10.1142/S0129183105007145
Precise Toppling Balance, Quenched Disorder, and Universality for Sandpiles
R. Karmakar, S. S. Manna and A. L. Stella Physical Review Letters 94 (8) (2005) https://doi.org/10.1103/PhysRevLett.94.088002
Sandpile model on an optimized scale-free network on Euclidean space
R Karmakar and S S Manna Journal of Physics A: Mathematical and General 38 (6) L87 (2005) https://doi.org/10.1088/0305-4470/38/6/L03
Particle–hole symmetry in a sandpile model
R Karmakar and S S Manna Journal of Statistical Mechanics: Theory and Experiment 2005 (01) L01002 (2005) https://doi.org/10.1088/1742-5468/2005/01/L01002
Phase transition and critical behavior in a model of organized criticality
M. Biskup, Ph. Blanchard, L. Chayes, D. Gandolfo and T. Krüger Probability Theory and Related Fields 128 (1) 1 (2004) https://doi.org/10.1007/s00440-003-0269-z
UNIVERSAL SCALING BEHAVIOR OF NON-EQUILIBRIUM PHASE TRANSITIONS
SVEN LÜBECK International Journal of Modern Physics B 18 (31n32) 3977 (2004) https://doi.org/10.1142/S0217979204027748
Directed fixed energy sandpile model
R. Karmakar and S. S. Manna Physical Review E 69 (6) (2004) https://doi.org/10.1103/PhysRevE.69.067107
STRONG EVENTS IN THE SAND-PILE MODEL
A. B. SHAPOVAL and M. G. SHNIRMAN International Journal of Modern Physics C 15 (02) 279 (2004) https://doi.org/10.1142/S012918310400570X
Sandpile models and random walkers on finite lattices
Yehiel Shilo and Ofer Biham Physical Review E 67 (6) (2003) https://doi.org/10.1103/PhysRevE.67.066102
Self-organized criticality within fractional Lorenz scheme
Alexander I. Olemskoi, Alexei V. Khomenko and Dmitrii O. Kharchenko Physica A: Statistical Mechanics and its Applications 323 263 (2003) https://doi.org/10.1016/S0378-4371(02)01991-X
Self-organized random walks and stochastic sandpile: from linear to branched avalanches
S.S Manna and A.L Stella Physica A: Statistical Mechanics and its Applications 316 (1-4) 135 (2002) https://doi.org/10.1016/S0378-4371(02)01497-8
QUANTUM FIELD THEORY RENORMALIZATION GROUP APPROACH TO SELF-ORGANIZED CRITICAL MODELS: THE CASE OF RANDOM BOUNDARIES
D. VOLCHENKOV, PH. BLANCHARD and B. CESSAC International Journal of Modern Physics B 16 (08) 1171 (2002) https://doi.org/10.1142/S0217979202010130
Continuously varying critical exponents in a sandpile model with internal disorder
A. Benyoussef, A. El Kenz, M. Khfifi and M. Loulidi Physical Review E 66 (4) (2002) https://doi.org/10.1103/PhysRevE.66.041302
Lyapunov exponents and transport in the Zhang model of self-organized criticality
B. Cessac, Ph. Blanchard and T. Krüger Physical Review E 64 (1) (2001) https://doi.org/10.1103/PhysRevE.64.016133
Precursors of catastrophe in the Bak-Tang-Wiesenfeld, Manna, and random-fiber-bundle models of failure
Srutarshi Pradhan and Bikas K. Chakrabarti Physical Review E 65 (1) (2001) https://doi.org/10.1103/PhysRevE.65.016113
Mechanisms of avalanche dynamics and forms of scaling in sandpiles
Attilio L Stella and Mario De Menech Physica A: Statistical Mechanics and its Applications 295 (1-2) 101 (2001) https://doi.org/10.1016/S0378-4371(01)00060-7
Evidence for universality within the classes of deterministic and stochastic sandpile models
Ofer Biham, Erel Milshtein and Ofer Malcai Physical Review E 63 (6) (2001) https://doi.org/10.1103/PhysRevE.63.061309
Universality classes in the random-storage sandpile model
Alexei Vázquez and Oscar Sotolongo-Costa Physical Review E 61 (1) 944 (2000) https://doi.org/10.1103/PhysRevE.61.944
Absorbing-state phase transitions in fixed-energy sandpiles
Alessandro Vespignani, Ronald Dickman, Miguel A. Muñoz and Stefano Zapperi Physical Review E 62 (4) 4564 (2000) https://doi.org/10.1103/PhysRevE.62.4564
Quasiperiodic tilings and self-organized criticality
Dieter Joseph Materials Science and Engineering: A 294-296 685 (2000) https://doi.org/10.1016/S0921-5093(00)01141-2
Scaling behavior of the Abelian sandpile model
Barbara Drossel Physical Review E 61 (3) R2168 (2000) https://doi.org/10.1103/PhysRevE.61.R2168
From waves to avalanches: Two different mechanisms of sandpile dynamics
Mario De Menech and Attilio L. Stella Physical Review E 62 (4) R4528 (2000) https://doi.org/10.1103/PhysRevE.62.R4528
Moment analysis of the probability distribution of different sandpile models
S. Lübeck Physical Review E 61 (1) 204 (2000) https://doi.org/10.1103/PhysRevE.61.204
Scaling of waves in the Bak-Tang-Wiesenfeld sandpile model
D. V. Ktitarev, S. Lübeck, P. Grassberger and V. B. Priezzhev Physical Review E 61 (1) 81 (2000) https://doi.org/10.1103/PhysRevE.61.81
The Upper Critical Dimension of the Abelian Sandpile Model
V. B. Priezzhev Journal of Statistical Physics 98 (3-4) 667 (2000) https://doi.org/10.1023/A:1018619323983
Universality classes in directed sandpile models
Romualdo Pastor-Satorras and Alessandro Vespignani Journal of Physics A: Mathematical and General 33 (3) L33 (2000) https://doi.org/10.1088/0305-4470/33/3/101
Inversion Symmetry and Exact Critical Exponents of Dissipating Waves in the Sandpile Model
Chin-Kun Hu, E. V. Ivashkevich, Chai-Yu Lin and V. B. Priezzhev Physical Review Letters 85 (19) 4048 (2000) https://doi.org/10.1103/PhysRevLett.85.4048
Crossover phenomenon in self-organized critical sandpile models
S. Lübeck Physical Review E 62 (5) 6149 (2000) https://doi.org/10.1103/PhysRevE.62.6149
ON A CONSERVATIVE LAVA FLOW AUTOMATON
J. A. O. MATOS and J. A. M. S. DUARTE International Journal of Modern Physics C 10 (01) 321 (1999) https://doi.org/10.1142/S012918319900022X
Universality in sandpiles
Alessandro Chessa, H. Eugene Stanley, Alessandro Vespignani and Stefano Zapperi Physical Review E 59 (1) R12 (1999) https://doi.org/10.1103/PhysRevE.59.R12
Critical states in a dissipative sandpile model
S. S. Manna, A. D. Chakrabarti and R. Cafiero Physical Review E 60 (5) R5005 (1999) https://doi.org/10.1103/PhysRevE.60.R5005
Dynamical real space renormalization group applied to sandpile models
Eugene V. Ivashkevich, Alexander M. Povolotsky, Alessandro Vespignani and Stefano Zapperi Physical Review E 60 (2) 1239 (1999) https://doi.org/10.1103/PhysRevE.60.1239
Cracking piles of brittle grains
František Slanina Physical Review E 60 (2) 1940 (1999) https://doi.org/10.1103/PhysRevE.60.1940
Modified renormalization strategy for sandpile models
Y. Moreno, J. B. Gómez and A. F. Pacheco Physical Review E 60 (6) 7565 (1999) https://doi.org/10.1103/PhysRevE.60.7565
Avalanche Merging and Continuous Flow in a Sandpile Model
Álvaro Corral and Maya Paczuski Physical Review Letters 83 (3) 572 (1999) https://doi.org/10.1103/PhysRevLett.83.572
Multifractal Scaling in the Bak-Tang-Wiesenfeld Sandpile and Edge Events
Claudio Tebaldi, Mario De Menech and Attilio L. Stella Physical Review Letters 83 (19) 3952 (1999) https://doi.org/10.1103/PhysRevLett.83.3952
Self-organized criticality
Donald L Turcotte Reports on Progress in Physics 62 (10) 1377 (1999) https://doi.org/10.1088/0034-4885/62/10/201
Fluctuations and Correlations in Sandpile Models
Alain Barrat, Alessandro Vespignani and Stefano Zapperi Physical Review Letters 83 (10) 1962 (1999) https://doi.org/10.1103/PhysRevLett.83.1962
Universality and self-similarity of an energy-constrained sandpile model with random neighbors
Shu-dong Zhang Physical Review E 60 (1) 259 (1999) https://doi.org/10.1103/PhysRevE.60.259
Onsets of avalanches in the BTW model
Ajanta Bhowal Physica A: Statistical Mechanics and its Applications 253 (1-4) 301 (1998) https://doi.org/10.1016/S0378-4371(97)00681-X
Dynamics of Eulerian walkers
A. M. Povolotsky, V. B. Priezzhev and R. R. Shcherbakov Physical Review E 58 (5) 5449 (1998) https://doi.org/10.1103/PhysRevE.58.5449
Energy Constrained Sandpile Models
Alessandro Chessa, Enzo Marinari and Alessandro Vespignani Physical Review Letters 80 (19) 4217 (1998) https://doi.org/10.1103/PhysRevLett.80.4217
Logarithmic corrections of the avalanche distributions of sandpile models at the upper critical dimension
S. Lübeck Physical Review E 58 (3) 2957 (1998) https://doi.org/10.1103/PhysRevE.58.2957
How self-organized criticality works: A unified mean-field picture
Alessandro Vespignani and Stefano Zapperi Physical Review E 57 (6) 6345 (1998) https://doi.org/10.1103/PhysRevE.57.6345
Self-organized criticality as an absorbing-state phase transition
Ronald Dickman, Alessandro Vespignani and Stefano Zapperi Physical Review E 57 (5) 5095 (1998) https://doi.org/10.1103/PhysRevE.57.5095
Continuous behavior in a simple model of the adhesive failure of a layer
M. Ferer and Duane H. Smith Physical Review E 57 (1) 866 (1998) https://doi.org/10.1103/PhysRevE.57.866
Dynamically Driven Renormalization Group Applied to Self-Organized Critical Systems
A. Vespignani, S. Zapperi and V. Loreto International Journal of Modern Physics B 12 (12n13) 1407 (1998) https://doi.org/10.1142/S021797929800082X
Expansion and contraction of avalanches in the two-dimensional Abelian sandpile
D. V. Ktitarev and V. B. Priezzhev Physical Review E 58 (3) 2883 (1998) https://doi.org/10.1103/PhysRevE.58.2883
Mean-field behavior of the sandpile model below the upper critical dimension
Alessandro Chessa, Enzo Marinari, Alessandro Vespignani and Stefano Zapperi Physical Review E 57 (6) R6241 (1998) https://doi.org/10.1103/PhysRevE.57.R6241
Universality classes in isotropic, Abelian, and non-Abelian sandpile models
Erel Milshtein, Ofer Biham and Sorin Solomon Physical Review E 58 (1) 303 (1998) https://doi.org/10.1103/PhysRevE.58.303
Regularity and reversibility of cascading systems
Scott Pratt and Eric Eslinger Physical Review E 56 (5) 5306 (1997) https://doi.org/10.1103/PhysRevE.56.5306
Avalanches and waves in the Abelian sandpile model
Maya Paczuski and Stefan Boettcher Physical Review E 56 (4) R3745 (1997) https://doi.org/10.1103/PhysRevE.56.R3745
Self-organised criticality in some dissipative sandpile models
H.J. Ruskin and Y. Feng Physica A: Statistical Mechanics and its Applications 245 (3-4) 453 (1997) https://doi.org/10.1016/S0378-4371(97)00317-8
Cluster, backbone, and elastic backbone structures of the multiple invasion percolation
Roberto N. Onody and Reginaldo A. Zara Physical Review E 56 (3) 2548 (1997) https://doi.org/10.1103/PhysRevE.56.2548
Sandpile model with activity inhibition
S. S. Manna and D. Giri Physical Review E 56 (5) R4914 (1997) https://doi.org/10.1103/PhysRevE.56.R4914
Dynamically driven renormalization group
Alessandro Vespignani, Stefano Zapperi and Vittorio Loreto Journal of Statistical Physics 88 (1-2) 47 (1997) https://doi.org/10.1007/BF02508464
Bak-Tang-Wiesenfeld sandpile model around the upper critical dimension
S. Lübeck and K. D. Usadel Physical Review E 56 (5) 5138 (1997) https://doi.org/10.1103/PhysRevE.56.5138
Order Parameter and Scaling Fields in Self-Organized Criticality
Alessandro Vespignani and Stefano Zapperi Physical Review Letters 78 (25) 4793 (1997) https://doi.org/10.1103/PhysRevLett.78.4793
n-State Exclusive Diffusion Models for Avalanche Processes Showing Self-Organized Criticality
Hirotsugu Kobayashi and Makoto Katori Journal of the Physical Society of Japan 66 (8) 2367 (1997) https://doi.org/10.1143/JPSJ.66.2367
Mean-field theory of avalanches in self-organized critical states
Makoto Katori and Hirotsugu Kobayashi Physica A: Statistical Mechanics and its Applications 229 (3-4) 461 (1996) https://doi.org/10.1016/0378-4371(96)00003-9
Sandpile model on the Sierpinski gasket fractal
Brigita Kutnjak-Urbanc, Stefano Zapperi, Sava Milošević and H. Eugene Stanley Physical Review E 54 (1) 272 (1996) https://doi.org/10.1103/PhysRevE.54.272
Multiple invasion percolation
Roberto N. Onody and Reginaldo A. Zara Physica A: Statistical Mechanics and its Applications 231 (4) 375 (1996) https://doi.org/10.1016/0378-4371(96)00108-2
Dynamical properties and predictability of a class of self-organized critical models
E. Caglioti and V. Loreto Physical Review E 53 (3) 2953 (1996) https://doi.org/10.1103/PhysRevE.53.2953
Pages :
1 à 100 sur 149 articles