La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Guy Joulin
J. Phys. France, 50 9 (1989) 1069-1082
Citations de cet article :
43 articles
Combustion Physics
Michael A. Liberman Combustion Physics 293 (2021) https://doi.org/10.1007/978-3-030-85139-2_11
Nonlinear dynamics of premixed flames: from deterministic stages to stochastic influence
B. Radisson, B. Denet and C. Almarcha Journal of Fluid Mechanics 903 (2020) https://doi.org/10.1017/jfm.2020.562
Self-acceleration and global pulsation in hydrodynamically unstable expanding laminar flames
Jialong Huo, Abhishek Saha, Zhuyin Ren and Chung K. Law Combustion and Flame 194 419 (2018) https://doi.org/10.1016/j.combustflame.2018.05.025
Laplacian growth without surface tension in filtration combustion: Analytical pole solution
Oleg Kupervasser Complexity 21 (5) 31 (2016) https://doi.org/10.1002/cplx.21627
Premixed flames propagating freely in tubes
Christophe Almarcha, Bruno Denet and Joel Quinard Combustion and Flame 162 (4) 1225 (2015) https://doi.org/10.1016/j.combustflame.2014.10.010
Random noise and pole-dynamics in unstable front propagation
O. Kupervasser and Z. Olami Combustion, Explosion, and Shock Waves 49 (2) 141 (2013) https://doi.org/10.1134/S0010508213020032
Wrinkled flames and geometrical stretch
Bruno Denet and Guy Joulin Physical Review E 84 (1) (2011) https://doi.org/10.1103/PhysRevE.84.016315
Turbulent propagation of premixed flames in the presence of Darrieus–Landau instability
F. Creta, N. Fogla and M. Matalon Combustion Theory and Modelling 15 (2) 267 (2011) https://doi.org/10.1080/13647830.2010.538722
Noise influence on pole solutions of the Sivashinsky equation for planar and outward propagating flames
R. V. Fursenko, K. L. Pan and S. S. Minaev Physical Review E 78 (5) (2008) https://doi.org/10.1103/PhysRevE.78.056301
Sivashinsky equation for corrugated flames in the large-wrinkle limit
Guy Joulin and Bruno Denet Physical Review E 78 (1) (2008) https://doi.org/10.1103/PhysRevE.78.016315
Asymptotic modelling of self-acceleration of spherical flames
V. Karlin and G. Sivashinsky Proceedings of the Combustion Institute 31 (1) 1023 (2007) https://doi.org/10.1016/j.proci.2006.07.233
Pseudoresonant interaction between flame and upstream velocity fluctuations
V. Karlin Physical Review E 73 (1) (2006) https://doi.org/10.1103/PhysRevE.73.016305
The rate of expansion of spherical flames
Vladimir Karlin and Gregory Sivashinsky Combustion Theory and Modelling 10 (4) 625 (2006) https://doi.org/10.1080/13647830600593752
Combustion theory and modeling
J. Buckmaster, P. Clavin, A. Liñán, et al. Proceedings of the Combustion Institute 30 (1) 1 (2005) https://doi.org/10.1016/j.proci.2004.08.280
Molecular transport effects on turbulent flame propagation and structure
A.N. Lipatnikov and J. Chomiak Progress in Energy and Combustion Science 31 (1) 1 (2005) https://doi.org/10.1016/j.pecs.2004.07.001
ESTIMATION OF THE LINEAR TRANSIENT GROWTH OF PERTURBATIONS OF CELLULAR FLAMES
V. KARLIN Mathematical Models and Methods in Applied Sciences 14 (08) 1191 (2004) https://doi.org/10.1142/S0218202504003593
IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics
Vladimir Karlin Solid Mechanics and Its Applications, IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics 113 549 (2004) https://doi.org/10.1007/1-4020-2604-8_51
On the Small‐Scale Stability of Thermonuclear Flames in Type Ia Supernovae
F. K. Ropke, J. C. Niemeyer and W. Hillebrandt The Astrophysical Journal 588 (2) 952 (2003) https://doi.org/10.1086/374216
Computational analysis of the steady states of the Sivashinsky model of hydrodynamic flame instability
V Karlin and G Makhviladze Combustion Theory and Modelling 7 (1) 87 (2003) https://doi.org/10.1088/1364-7830/7/1/305
High accuracy periodic solutions to the Sivashinsky equation
V. Karlin, V. Maz’ya and G. Schmidt Journal of Computational Physics 188 (1) 209 (2003) https://doi.org/10.1016/S0021-9991(03)00164-5
Some developments in premixed combustion modeling
Gregory I. Sivashinsky Proceedings of the Combustion Institute 29 (2) 1737 (2002) https://doi.org/10.1016/S1540-7489(02)80213-9
Cellular flames may exhibit a non-modal transient instability
V. Karlin Proceedings of the Combustion Institute 29 (2) 1537 (2002) https://doi.org/10.1016/S1540-7489(02)80188-2
Two–Dimensional Stability of the “Pole” Solutions of the Sivashinsky Equation
S. S. Minaev Combustion, Explosion and Shock Waves 37 (3) 255 (2001) https://doi.org/10.1023/A:1017563604123
Coherent Structures in Complex Systems
Guy Joulin, Gaël Boury, Pierre Cambray, Yves D’Angelo and Karl Joulain Lecture Notes in Physics, Coherent Structures in Complex Systems 567 127 (2001) https://doi.org/10.1007/3-540-44698-2_9
Stability Limits of Curved Stationary Flames in Cylindrical Tubes
SERGEY SENCHENKO, VITALIY BYCHKOV and MICHAEL LIBERMAN Combustion Science and Technology 166 (1) 109 (2001) https://doi.org/10.1080/00102200108907822
Numerical studies of flames in wide tubes: Stability limits of curved stationary flames
O. Yu. Travnikov, V. V. Bychkov and M. A. Liberman Physical Review E 61 (1) 468 (2000) https://doi.org/10.1103/PhysRevE.61.468
Nonlinear equation for curved nonstationary flames and flame stability
V. V. Bychkov, K. A. Kovalev and M. A. Liberman Physical Review E 60 (3) 2897 (1999) https://doi.org/10.1103/PhysRevE.60.2897
Stability analysis of flame fronts: Dynamical systems approach in the complex plane
Oleg Kupervasser, Zeev Olami and Itamar Procaccia Physical Review E 59 (3) 2587 (1999) https://doi.org/10.1103/PhysRevE.59.2587
Dynamics and Wrinkling of Radially Propagating Fronts Inferred from Scaling Laws in Channel Geometries
Barak Galanti, Oleg Kupervasser, Zeev Olami and Itamar Procaccia Physical Review Letters 80 (11) 2477 (1998) https://doi.org/10.1103/PhysRevLett.80.2477
Random noise and pole dynamics in unstable front propagation
Zeev Olami, Barak Galanti, Oleg Kupervasser and Itamar Procaccia Physical Review E 55 (3) 2649 (1997) https://doi.org/10.1103/PhysRevE.55.2649
On Hydrodynamic Instability of Stretched Flames
Y. Kortsarts, I. Brailovsky and G. I. Sivashinsky Combustion Science and Technology 123 (1-6) 207 (1997) https://doi.org/10.1080/00102209708935628
Geometry of Developing Flame Fronts: Analysis with Pole Decomposition
Oleg Kupervasser, Zeev Olami and Itamar Procaccia Physical Review Letters 76 (1) 146 (1996) https://doi.org/10.1103/PhysRevLett.76.146
Coalescence Problems in the Theory of Expanding Wrinkled Premixed Flames
PIERRE CAMBRAY, KARL JOULAIN and GUY JOULIN Combustion Science and Technology 112 (1) 271 (1996) https://doi.org/10.1080/00102209608951961
On self-acceleration of outward propagating wrinkled flames
L. Filyand, G.I. Sivashinsky and M.L. Frankel Physica D: Nonlinear Phenomena 72 (1-2) 110 (1994) https://doi.org/10.1016/0167-2789(94)90170-8
Nonlinear hydrodynamic instability of expanding flames: Intrinsic dynamics
Guy Joulin Physical Review E 50 (3) 2030 (1994) https://doi.org/10.1103/PhysRevE.50.2030
On moderately-forced premixed flames
Pierre Cambray and Guy Joulin Symposium (International) on Combustion 24 (1) 61 (1992) https://doi.org/10.1016/S0082-0784(06)80012-3
On the linear hydrodynamic stability and response of premixed flames in stagnation-point flows
G. Joulin and G.I. Sivashinsky Symposium (International) on Combustion 24 (1) 37 (1992) https://doi.org/10.1016/S0082-0784(06)80009-3
On a Tentative, Approximate Evolution Equation for Markedly Wrinkled Premixed Flames
GUY JOULIN and PIERRE CAMBRAY Combustion Science and Technology 81 (4-6) 243 (1992) https://doi.org/10.1080/00102209208951805
On the intrinsic dynamics of premixed flames
Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences 332 (1624) 135 (1990) https://doi.org/10.1098/rsta.1990.0105
Dissipative Structures in Transport Processes and Combustion
G. Joulin Springer Series in Synergetics, Dissipative Structures in Transport Processes and Combustion 48 20 (1990) https://doi.org/10.1007/978-3-642-84230-6_3
New Trends in Nonlinear Dynamics and Pattern-Forming Phenomena
Guy Joulin NATO ASI Series, New Trends in Nonlinear Dynamics and Pattern-Forming Phenomena 237 107 (1990) https://doi.org/10.1007/978-1-4684-7479-4_19
The cellular nature of hydrodynamic flame instability
S. Gutman and G.I. Sivashinsky Physica D: Nonlinear Phenomena 43 (1) 129 (1990) https://doi.org/10.1016/0167-2789(90)90021-G
Dynamics of Curved Fronts
Dynamics of Curved Fronts 95 (1988) https://doi.org/10.1016/B978-0-08-092523-3.50013-7