La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
E. Penzenstadler , H.-R. Trebin
J. Phys. France, 50 9 (1989) 1027-1040
Citations de cet article :
74 articles
Torus-like solutions for the Landau-de Gennes model. Part II: Topology of S1-equivariant minimizers
Federico Luigi Dipasquale, Vincent Millot and Adriano Pisante Journal of Functional Analysis 286 (7) 110314 (2024) https://doi.org/10.1016/j.jfa.2024.110314
Moiré effect enables versatile design of topological defects in nematic liquid crystals
Xinyu Wang, Jinghua Jiang, Juan Chen, Zhawure Asilehan, Wentao Tang, Chenhui Peng and Rui Zhang Nature Communications 15 (1) (2024) https://doi.org/10.1038/s41467-024-45529-z
Pattern formation in Landau–de Gennes theory
Ho–Man Tai and Yong Yu Journal of Functional Analysis 285 (1) 109923 (2023) https://doi.org/10.1016/j.jfa.2023.109923
Exotic structures of a thin film of chiral liquid crystals: a numerical study based on the Landau–de Gennes theory
Jun-ichi Fukuda Liquid Crystals Reviews 10 (1-2) 69 (2022) https://doi.org/10.1080/21680396.2022.2077256
Stability of a split-core configuration induced by saddle-splay elasticity in a submicron nematic liquid crystal spherical droplet
Hui Zhang, Hongen Liu, Zhidong Zhang and Guili Zheng Liquid Crystals 49 (13) 1746 (2022) https://doi.org/10.1080/02678292.2022.2059715
Interplay between diffractive radiation shed and damping coefficient on nematicon propagation
N. M. Sajitha and T. P. Suneera Journal of Modern Optics 69 (20) 1134 (2022) https://doi.org/10.1080/09500340.2022.2159089
Torus-like solutions for the Landau–De Gennes model.
Adriano Pisante Annales de la Faculté des sciences de Toulouse : Mathématiques 30 (2) 301 (2021) https://doi.org/10.5802/afst.1676
Torus-like Solutions for the Landau-de Gennes Model. Part I: The Lyuksyutov Regime
Federico Dipasquale, Vincent Millot and Adriano Pisante Archive for Rational Mechanics and Analysis 239 (2) 599 (2021) https://doi.org/10.1007/s00205-020-01582-8
Disclinations in Limiting Landau–de Gennes Theory
Yong Yu Archive for Rational Mechanics and Analysis 237 (1) 147 (2020) https://doi.org/10.1007/s00205-020-01505-7
A moving mesh method for modelling defects in nematic liquid crystals
Craig S. MacDonald, John A. Mackenzie and Alison Ramage Journal of Computational Physics: X 8 100065 (2020) https://doi.org/10.1016/j.jcpx.2020.100065
Influence of boundary conditions on the order and defects of biaxial nematic droplets
C. Chiccoli, L. R. Evangelista, P. Pasini, et al. Physical Review E 100 (3) (2019) https://doi.org/10.1103/PhysRevE.100.032702
Can elastic constants and surface alignment be obtained from polarized microscopy images of nematic droplets? A Monte Carlo study
C. Chiccoli, P. Pasini and C. Zannoni Journal of Molecular Liquids 267 158 (2018) https://doi.org/10.1016/j.molliq.2017.12.045
SCALINGS AND LIMITS OF LANDAU-DE GENNES MODELS FOR LIQUID CRYSTALS: A COMMENT ON SOME RECENT ANALYTICAL PAPERS
Eugene C. Gartland Jr. Mathematical Modelling and Analysis 23 (3) 414 (2018) https://doi.org/10.3846/mma.2018.025
Some reflections on defects in liquid crystals: from Amerio to Zannoni and beyond
Timothy J. Sluckin Liquid Crystals 45 (13-15) 1894 (2018) https://doi.org/10.1080/02678292.2018.1500652
Topological Formations in Chiral Nematic Droplets
Gregor Posnjak Springer Theses, Topological Formations in Chiral Nematic Droplets 169 (2018) https://doi.org/10.1007/978-3-319-98261-8_9
On the Defect Structure of Biaxial Nematic Droplets
C. Chiccoli, L. R. Evangelista, P. Pasini, et al. Scientific Reports 8 (1) (2018) https://doi.org/10.1038/s41598-018-20492-0
Biaxial escape in nematics at low temperature
Andres Contreras and Xavier Lamy Journal of Functional Analysis 272 (10) 3987 (2017) https://doi.org/10.1016/j.jfa.2017.01.012
On the Landau–de Gennes Elastic Energy of a Q-Tensor Model for Soft Biaxial Nematics
Domenico Mucci and Lorenzo Nicolodi Journal of Nonlinear Science 27 (6) 1687 (2017) https://doi.org/10.1007/s00332-017-9383-4
Topological defects in an unconfined nematic fluid induced by single and double spherical colloidal particles
Yiwei Wang, Pingwen Zhang and Jeff Z. Y. Chen Physical Review E 96 (4) (2017) https://doi.org/10.1103/PhysRevE.96.042702
Uniaxial versus biaxial character of nematic equilibria in three dimensions
Duvan Henao, Apala Majumdar and Adriano Pisante Calculus of Variations and Partial Differential Equations 56 (2) (2017) https://doi.org/10.1007/s00526-017-1142-8
Order Reconstruction for Nematics on Squares and Hexagons: A Landau--de Gennes Study
Giacomo Canevari, Apala Majumdar and Amy Spicer SIAM Journal on Applied Mathematics 77 (1) 267 (2017) https://doi.org/10.1137/16M1087990
Perturbed hedgehogs: continuous deformation of point defects in biaxial nematic liquid crystals
D. R. J. Chillingworth IMA Journal of Applied Mathematics 81 (4) 647 (2016) https://doi.org/10.1093/imamat/hxw005
Uniaxial symmetry in nematic liquid crystals
Xavier Lamy Annales de l'Institut Henri Poincaré C, Analyse non linéaire 32 (5) 1125 (2015) https://doi.org/10.1016/j.anihpc.2014.05.006
Handbook of Liquid Crystals
Oleg D. Lavrentovich Handbook of Liquid Crystals 1 (2014) https://doi.org/10.1002/9783527671403.hlc027
Equilibrium Configuration in a Nematic Liquid Crystal Droplet with Homeotropic Anchoring of Finite Strength
Masaki Kanke and Kazuo Sasaki Journal of the Physical Society of Japan 82 (9) 094605 (2013) https://doi.org/10.7566/JPSJ.82.094605
Numerical Study of a Disclination Loop in a Nematic Liquid Crystal Droplet
Masaki Kanke and Kazuo Sasaki Journal of the Physical Society of Japan 82 (3) 034601 (2013) https://doi.org/10.7566/JPSJ.82.034601
Nematic liquid crystal boojums with handles on colloidal handlebodies
Qingkun Liu, Bohdan Senyuk, Mykola Tasinkevych and Ivan I. Smalyukh Proceedings of the National Academy of Sciences 110 (23) 9231 (2013) https://doi.org/10.1073/pnas.1301464110
The radial-hedgehog solution in Landau–de Gennes' theory for nematic liquid crystals
APALA MAJUMDAR European Journal of Applied Mathematics 23 (1) 61 (2012) https://doi.org/10.1017/S0956792511000295
Deformable homeotropic nematic droplets in a magnetic field
Ronald H. J. Otten and Paul van der Schoot The Journal of Chemical Physics 137 (15) (2012) https://doi.org/10.1063/1.4756946
Liquid crystal boojum-colloids
M Tasinkevych, N M Silvestre and M M Telo da Gama New Journal of Physics 14 (7) 073030 (2012) https://doi.org/10.1088/1367-2630/14/7/073030
Tactoids of Plate-Like Particles: Size, Shape, and Director Field
A. A. Verhoeff, I. A. Bakelaar, R. H. J. Otten, P. van der Schoot and H. N. W. Lekkerkerker Langmuir 27 (1) 116 (2011) https://doi.org/10.1021/la104128m
Topological defects in a two-dimensional liquid crystal confined in a circular nanocavity
D. de las Heras, E. Velasco and L. Mederos Physical Review E 79 (6) (2009) https://doi.org/10.1103/PhysRevE.79.061703
Landau–de Gennes modelling of nematic liquid crystal colloids
Miha Ravnik and Slobodan Žumer Liquid Crystals 36 (10-11) 1201 (2009) https://doi.org/10.1080/02678290903056095
Fingered core structure of nematic boojums
Samo Kralj, Riccardo Rosso and Epifanio G. Virga Physical Review E 78 (3) (2008) https://doi.org/10.1103/PhysRevE.78.031701
Soft Matter under Exogenic Impacts
M. Svetec, M. Ambrožič and S. Kralj NATO Science Series II: Mathematics, Physics and Chemistry, Soft Matter under Exogenic Impacts 242 239 (2007) https://doi.org/10.1007/978-1-4020-5872-1_16
Defect-enhanced nematic surface order reconstruction
Milan Ambrožič, Samo Kralj and Epifanio G. Virga Physical Review E 75 (3) (2007) https://doi.org/10.1103/PhysRevE.75.031708
Molecular dynamics simulation of polymer dispersed liquid crystal droplets under competing boundary conditions
L. V. Mirantsev and S. Romano Liquid Crystals 33 (2) 187 (2006) https://doi.org/10.1080/02678290500393073
Topological point defects in nematic liquid crystals
M. Kleman and O. D. Lavrentovich Philosophical Magazine 86 (25-26) 4117 (2006) https://doi.org/10.1080/14786430600593016
Annihilation of nematic point defects: Pre-collision and post-collision evolution
M. Svetec, S. Kralj, Z. Bradač and S. Žumer The European Physical Journal E 20 (1) 71 (2006) https://doi.org/10.1140/epje/i2005-10120-9
Hypothesis of Dye Aggregation in a Nematic Liquid Crystal: From Experiment to a Model of the Enhanced Light-Director Interaction
V. M. Pergamenshchik, V. Ya. Gayvoronsky, S. V. Yakunin, et al. Molecular Crystals and Liquid Crystals 454 (1) 145/[547] (2006) https://doi.org/10.1080/15421400600654181
Disclinations in a homogenously deformed nematic elastomer
E. Fried and Bidhan C. Roy Continuum Mechanics and Thermodynamics 18 (5) 259 (2006) https://doi.org/10.1007/s00161-006-0027-4
Nature of disclination cores in liquid crystals
Shanju Zhang, Eugene M. Terentjev and Athene M. Donald Liquid Crystals 32 (1) 69 (2005) https://doi.org/10.1080/02678290512331324057
Atomic Force Microscopy Study for Supermolecular Microstructures in Side-Chain Liquid Crystalline Polymer Films
Shanju Zhang, Eugene M. Terentjev and Athene M. Donald Langmuir 21 (8) 3539 (2005) https://doi.org/10.1021/la047115r
Photoinduced ordering and anchoring properties of azo-dye films
Alexei D. Kiselev, Vladimir Chigrinov and Dan Ding Huang Physical Review E 72 (6) (2005) https://doi.org/10.1103/PhysRevE.72.061703
HEDGEHOG ANNIHILATION IN A CONFINED NEMATIC LIQUID CRYSTAL
M. Svetec, Z. Brada[cbreve], S. Kralj and S. [Zbreve]umer Molecular Crystals and Liquid Crystals 413 (1) 43 (2004) https://doi.org/10.1080/15421400490432551
Instability modes of high-strength disclinations in nematics
D. Svenšek and S. Žumer Physical Review E 70 (6) (2004) https://doi.org/10.1103/PhysRevE.70.061707
Order reconstruction in frustrated nematic twist cells
Fulvio Bisi, Eugene C. Gartland, Riccardo Rosso and Epifanio G. Virga Physical Review E 68 (2) (2003) https://doi.org/10.1103/PhysRevE.68.021707
Physics of defects in nematic liquid crystals
R Repnik, L Mathelitsch, M Svetec and S Kralj European Journal of Physics 24 (4) 481 (2003) https://doi.org/10.1088/0143-0807/24/4/366
Stability of a hyperbolic disclination ring in a nematic liquid crystal
Jun-ichi Fukuda and Hiroshi Yokoyama Physical Review E 66 (1) (2002) https://doi.org/10.1103/PhysRevE.66.012703
Defect structure of a nematic liquid crystal around a spherical particle: Adaptive mesh refinement approach
Jun-ichi Fukuda, Makoto Yoneya and Hiroshi Yokoyama Physical Review E 65 (4) (2002) https://doi.org/10.1103/PhysRevE.65.041709
Defects in Liquid Crystals: Computer Simulations, Theory and Experiments
A. M. Sonnet and S. Hess Defects in Liquid Crystals: Computer Simulations, Theory and Experiments 17 (2001) https://doi.org/10.1007/978-94-010-0512-8_2
Universal fine structure of nematic hedgehogs
Samo Kralj and Epifanio G Virga Journal of Physics A: Mathematical and General 34 (4) 829 (2001) https://doi.org/10.1088/0305-4470/34/4/309
Defects in Liquid Crystals: Computer Simulations, Theory and Experiments
H.-R. Trebin Defects in Liquid Crystals: Computer Simulations, Theory and Experiments 1 (2001) https://doi.org/10.1007/978-94-010-0512-8_1
Defects in Liquid Crystals: Computer Simulations, Theory and Experiments
C. Chiccoli, P. Pasini, I. Feruli and C. Zannoni Defects in Liquid Crystals: Computer Simulations, Theory and Experiments 87 (2001) https://doi.org/10.1007/978-94-010-0512-8_4
Physics of colloidal dispersions in nematic liquid crystals
Holger Stark Physics Reports 351 (6) 387 (2001) https://doi.org/10.1016/S0370-1573(00)00144-7
Fine structure of defects in radial nematic droplets
S. Mkaddem and E. C. Gartland Physical Review E 62 (5) 6694 (2000) https://doi.org/10.1103/PhysRevE.62.6694
Instability of radial hedgehog configurations in nematic liquid crystals under Landau–de Gennes free-energy models
E. C. Gartland and S. Mkaddem Physical Review E 59 (1) 563 (1999) https://doi.org/10.1103/PhysRevE.59.563
Topological defects and interactions in nematic emulsions
T. C. Lubensky, David Pettey, Nathan Currier and Holger Stark Physical Review E 57 (1) 610 (1998) https://doi.org/10.1103/PhysRevE.57.610
Defects in liquid crystals and cosmology
HANS-RAINER TREBIN Liquid Crystals 24 (1) 127 (1998) https://doi.org/10.1080/026782998207659
Disclination Loop in Mori-Nakanishi Ansatz: Role of the Divergence Elasticity
O. D. Lavrentovich, T. Ishikawa and E. M. Terentjev Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 299 (1) 301 (1997) https://doi.org/10.1080/10587259708042008
Generalized Landau–de Gennes theory of uniaxial and biaxial nematic liquid crystals
M. C. J. M. Vissenberg, S. Stallinga and G. Vertogen Physical Review E 55 (4) 4367 (1997) https://doi.org/10.1103/PhysRevE.55.4367
Metastable nematic hedgehogs
Riccardo Rosso and Epifanio G Virga Journal of Physics A: Mathematical and General 29 (14) 4247 (1996) https://doi.org/10.1088/0305-4470/29/14/041
Nematic ordering in porous glasses: A deuterium NMR study
S. Kralj, A. Zidanšek, G. Lahajnar, et al. Physical Review E 53 (4) 3629 (1996) https://doi.org/10.1103/PhysRevE.53.3629
Field Equation of Nematostatics
Francesco Greco Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 290 (1) 139 (1996) https://doi.org/10.1080/10587259608031899
Alignment tensor versus director: Description of defects in nematic liquid crystals
A. Sonnet, A. Kilian and S. Hess Physical Review E 52 (1) 718 (1995) https://doi.org/10.1103/PhysRevE.52.718
Monte Carlo study of the effect of an applied field on the molecular organization of polymer-dispersed liquid-crystal droplets
E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini and F. Semeria Physical Review E 49 (1) 614 (1994) https://doi.org/10.1103/PhysRevE.49.614
Energy versus topology: Competing defect structures in 2D complex vector field
L. M. Pismen Physical Review Letters 72 (16) 2557 (1994) https://doi.org/10.1103/PhysRevLett.72.2557
Monte Carlo Simulations of Model Nematic Droplets
C. Chiccoli, P. Pasini, F. Semeria and C. Zannoni Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 212 (1) 197 (1992) https://doi.org/10.1080/10587259208037260
Monte Carlo study of the molecular organization in model nematic droplets. Field effects
E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini and F. Semeria Chemical Physics Letters 197 (3) 224 (1992) https://doi.org/10.1016/0009-2614(92)85759-4
Fréedericksz transitions in supra-μm nematic droplets
S. Kralj and S. Žumer Physical Review A 45 (4) 2461 (1992) https://doi.org/10.1103/PhysRevA.45.2461
Motion of interacting point defects in nematics
L. M. Pismen and B. Y. Rubinstein Physical Review Letters 69 (1) 96 (1992) https://doi.org/10.1103/PhysRevLett.69.96
Structures of the cholesteric liquid crystal droplets with parallel surface anchoring
J. Bezić and S. Žumer Liquid Crystals 11 (4) 593 (1992) https://doi.org/10.1080/02678299208029013
Defect structures of nematic liquid crystals in cylindrical cavities
I. Vilfan, M. Vilfan and S. Žumer Physical Review A 43 (12) 6875 (1991) https://doi.org/10.1103/PhysRevA.43.6875
On the Occurrence of Point and Ring Defects in the Nematic-Nematic Coexistence Range of a Binary Mixture of Rod-like and Disc-like Mesogens
R. Pratibha and N. V. Madhusudana Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 178 (1) 167 (1990) https://doi.org/10.1080/00268949008042717