La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
E. Amaldi , S. Nicolis
J. Phys. France, 50 17 (1989) 2333-2345
Citations de cet article :
19 articles
The Target Switch Algorithm: A Constructive Learning Procedure for Feed-Forward Neural Networks
Colin Campbell and C. Perez Vicente Neural Computation 7 (6) 1245 (1995) https://doi.org/10.1162/neco.1995.7.6.1245
A review of combinatorial problems arising in feedforward neural network design
E. Amaldi, E. Mayoraz and D. de Werra Discrete Applied Mathematics 52 (2) 111 (1994) https://doi.org/10.1016/0166-218X(92)00184-N
Maximizing the robustness of a linear threshold classifier with discrete weights
Eddy Mayoraz and Vincent Robert Network: Computation in Neural Systems 5 (2) 299 (1994) https://doi.org/10.1088/0954-898X/5/2/011
Learning in Neural Networks with Material Synapses
Daniel J. Amit and Stefano Fusi Neural Computation 6 (5) 957 (1994) https://doi.org/10.1162/neco.1994.6.5.957
Maximizing the robustness of a linear threshold classifier with discrete weights
Eddy Mayoraz and Vincent Robert Network: Computation in Neural Systems 5 (2) 299 (1994) https://doi.org/10.1088/0954-898X_5_2_011
A perceptron with a skeletal weight-space
R W Penny and D Sherrington Journal of Physics A: Mathematical and General 27 (1) 23 (1994) https://doi.org/10.1088/0305-4470/27/1/003
Computational complexity, learning rules and storage capacities: A Monte Carlo study for the binary perceptron
H. -K. Patel Zeitschrift f�r Physik B Condensed Matter 91 (2) 257 (1993) https://doi.org/10.1007/BF01315244
The weight-space of the binary perceptron
R W Penney and D Sherrington Journal of Physics A: Mathematical and General 26 (22) 6173 (1993) https://doi.org/10.1088/0305-4470/26/22/018
An introduction to population approaches for optimization and hierarchical objective functions: A discussion on the role of tabu search
Pablo Moscato Annals of Operations Research 41 (2) 85 (1993) https://doi.org/10.1007/BF02022564
Study of a learning algorithm for neural networks with discrete synaptic couplings
C J Pérez Vicente, J Carrabina and E Valderrama Network: Computation in Neural Systems 3 (2) 165 (1992) https://doi.org/10.1088/0954-898X_3_2_005
Study of a learning algorithm for neural networks with discrete synaptic couplings
C Vicente, J Carrabina and E Valderrama Network: Computation in Neural Systems 3 (2) 165 (1992) https://doi.org/10.1088/0954-898X/3/2/005
E. Mayoraz 2 254 (1992) https://doi.org/10.1109/IJCNN.1992.226999
Artificial Neural Networks
C. J. Pérez Vicente, J. Carrabina, F. Garrido and E. Valderrama Lecture Notes in Computer Science, Artificial Neural Networks 540 144 (1991) https://doi.org/10.1007/BFb0035889
Artificial Neural Networks
Eddy Mayoraz Lecture Notes in Computer Science, Artificial Neural Networks 540 78 (1991) https://doi.org/10.1007/BFb0035880
Finite-state neural networks. A step toward the simulation of very large systems
G. A. Kohring Journal of Statistical Physics 62 (3-4) 563 (1991) https://doi.org/10.1007/BF01017973
Finite-size effects and bounds for perceptron models
B Derrida, R B Griffiths and A Prugel-Bennett Journal of Physics A: Mathematical and General 24 (20) 4907 (1991) https://doi.org/10.1088/0305-4470/24/20/022
Neural networks with many-neuron interactions
G.A. Kohring Journal de Physique 51 (2) 145 (1990) https://doi.org/10.1051/jphys:01990005102014500
Adaptive genetic algorithm for the binary perceptron problem
H M Kohler Journal of Physics A: Mathematical and General 23 (23) L1265 (1990) https://doi.org/10.1088/0305-4470/23/23/014
Statistical Mechanics of Neural Networks
C. J. Pérez Vicente Lecture Notes in Physics, Statistical Mechanics of Neural Networks 368 167 (1990) https://doi.org/10.1007/3540532676_48