La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Daniel H. Rothman , Stéphane Zaleski
J. Phys. France, 50 16 (1989) 2161-2174
Citations de cet article :
24 articles
STOCHASTIC AND HYDRODYNAMIC LATTICE GAS MODELS: MEAN-FIELD KINETIC APPROACHES
JEAN-FRANÇOIS GOUYET and CÉCILE APPERT International Journal of Bifurcation and Chaos 12 (02) 227 (2002) https://doi.org/10.1142/S0218127402004334
Domain growth in computer simulations of segregating two-dimensional binary fluids
S. Bastea and J. L. Lebowitz Physical Review E 52 (4) 3821 (1995) https://doi.org/10.1103/PhysRevE.52.3821
Boltzmann cellular automata studies of the spinodal decomposition
Renata B. Rybka, Marek Cieplak and Dominique Salin Physica A: Statistical Mechanics and its Applications 222 (1-4) 105 (1995) https://doi.org/10.1016/0378-4371(95)00209-X
Rupture and coalescence in two-dimensional cellular automata fluids
Marek Cieplak Physical Review E 51 (5) 4353 (1995) https://doi.org/10.1103/PhysRevE.51.4353
Interfacial Phenomena in Boltzmann Cellular Automata
U D'Ortona, D Salin, M Cieplak and J. R Banavar Europhysics Letters (EPL) 28 (5) 317 (1994) https://doi.org/10.1209/0295-5075/28/5/004
Lattice-gas models of phase separation: interfaces, phase transitions, and multiphase flow
Daniel H. Rothman and Stéphane Zaleski Reviews of Modern Physics 66 (4) 1417 (1994) https://doi.org/10.1103/RevModPhys.66.1417
Three-dimensional lattice gas with minimal interactions
Cé Appert, Dominique d'Humières, Valérie Pot and Stéphane Zaleski Transport Theory and Statistical Physics 23 (1-3) 107 (1994) https://doi.org/10.1080/00411459408203856
Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing
Muhammad Sahimi Reviews of Modern Physics 65 (4) 1393 (1993) https://doi.org/10.1103/RevModPhys.65.1393
Lattice-gas automata with attractive and repulsive interactions
M. Gerits, M. H. Ernst and D. Frenkel Physical Review E 48 (2) 988 (1993) https://doi.org/10.1103/PhysRevE.48.988
From ordered bubbles to random stripes: Pattern formation in a hydrodynamic lattice gas
Daniel H. Rothman Journal of Statistical Physics 71 (3-4) 641 (1993) https://doi.org/10.1007/BF01058440
Spinodal decomposition in a Hele-Shaw cell
Aritomo Shinozaki and Yoshitsugu Oono Physical Review A 45 (4) R2161 (1992) https://doi.org/10.1103/PhysRevA.45.R2161
Numerical Methods for the Simulation of Multi-Phase and Complex Flow
T. Verheggen, P. Rem and J. Somers Lecture Notes in Physics, Numerical Methods for the Simulation of Multi-Phase and Complex Flow 398 1 (1992) https://doi.org/10.1007/BFb0022302
Microscopic Simulations of Complex Hydrodynamic Phenomena
Daniel H. Rothman NATO ASI Series, Microscopic Simulations of Complex Hydrodynamic Phenomena 292 221 (1992) https://doi.org/10.1007/978-1-4899-2314-1_17
Lattice-gas and lattice-Boltzmann models of miscible fluids
Richard Holme and Daniel H. Rothman Journal of Statistical Physics 68 (3-4) 409 (1992) https://doi.org/10.1007/BF01341756
A particle model for spinodal decomposition
Joel L. Lebowitz, Enza Orlandi and Errico Presutti Journal of Statistical Physics 63 (5-6) 933 (1991) https://doi.org/10.1007/BF01029992
Complex Rheology in a Model of a Phase-Separating Fluid
D. H Rothman Europhysics Letters (EPL) 14 (4) 337 (1991) https://doi.org/10.1209/0295-5075/14/4/009
A lattice-gas model for three immiscible fluids
Andrew K. Gunstensen and Daniel H. Rothman Physica D: Nonlinear Phenomena 47 (1-2) 47 (1991) https://doi.org/10.1016/0167-2789(91)90278-H
Lattice gas automata for simple and complex fluids
Shiyi Chen, G. D. Doolen and W. H. Matthaeus Journal of Statistical Physics 64 (5-6) 1133 (1991) https://doi.org/10.1007/BF01048819
A liquid-gas model on a lattice
Cécile Appert, Daniel H. Rothman and Stéphane Zaleski Physica D: Nonlinear Phenomena 47 (1-2) 85 (1991) https://doi.org/10.1016/0167-2789(91)90282-E
A Galilean-invariant immiscible lattice gas
Andrew K. Gunstensen and Daniel H. Rothman Physica D: Nonlinear Phenomena 47 (1-2) 53 (1991) https://doi.org/10.1016/0167-2789(91)90279-I
Deformation, growth, and order in sheared spinodal decomposition
Daniel H. Rothman Physical Review Letters 65 (26) 3305 (1990) https://doi.org/10.1103/PhysRevLett.65.3305
Critical Phenomena in an Immiscible Lattice-Gas Cellular Automaton
C. K Chan and N. Y Liang Europhysics Letters (EPL) 13 (6) 495 (1990) https://doi.org/10.1209/0295-5075/13/6/004
Macroscopic laws for immiscible two‐phase flow in porous media: Results From numerical experiments
Daniel H. Rothman Journal of Geophysical Research: Solid Earth 95 (B6) 8663 (1990) https://doi.org/10.1029/JB095iB06p08663
Cellular Automata and Modeling of Complex Physical Systems
D. H. Rothman Springer Proceedings in Physics, Cellular Automata and Modeling of Complex Physical Systems 46 232 (1989) https://doi.org/10.1007/978-3-642-75259-9_19