Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Dynamics of sparse Boolean networks with multi-node and self-interactions

Christian John Hurry, Alexander Mozeika and Alessia Annibale
Journal of Physics A: Mathematical and Theoretical 55 (41) 415003 (2022)
https://doi.org/10.1088/1751-8121/ac9165

Symmetric sequence processing in a recurrent neural network model with a synchronous dynamics

F L Metz and W K Theumann
Journal of Physics A: Mathematical and Theoretical 42 (38) 385001 (2009)
https://doi.org/10.1088/1751-8113/42/38/385001

Phase Transition between Synchronous and Asynchronous Updating Algorithms

Filippo Radicchi, Daniele Vilone and Hildegard Meyer-Ortmanns
Journal of Statistical Physics 129 (3) 593 (2007)
https://doi.org/10.1007/s10955-007-9416-8

Combined update scheme in the Sznajd model

Tu Yu-Song, A.O. Sousa, Kong Ling-Jiang and Liu Mu-Ren
Physica A: Statistical Mechanics and its Applications 370 (2) 727 (2006)
https://doi.org/10.1016/j.physa.2006.03.017

Synchronous versus sequential updating in the three-state Ising neural network with variable dilution

D. Bollé, R. Erichsen and T. Verbeiren
Physica A: Statistical Mechanics and its Applications 368 (2) 311 (2006)
https://doi.org/10.1016/j.physa.2005.12.052

Retrieval-time properties of the Little-Hopfield model and their physiological relevance

Sebastián Risau-Gusman and Marco A. P. Idiart
Physical Review E 72 (4) (2005)
https://doi.org/10.1103/PhysRevE.72.041913

The Blume-Emery-Griffiths neural network with synchronous updating and variable dilution

D. Bollé and J. Busquets Blanco
The European Physical Journal B 47 (2) 281 (2005)
https://doi.org/10.1140/epjb/e2005-00328-7

The signal-to-noise analysis of the Little–Hopfield model revisited

D Bollé, J Busquets Blanco and T Verbeiren
Journal of Physics A: Mathematical and General 37 (6) 1951 (2004)
https://doi.org/10.1088/0305-4470/37/6/001

Two-cycles in spin-systems: sequential versus synchronous updating in multi-state Ising-type ferromagnets

D. Bollé and J. Busquets Blanco
The European Physical Journal B 42 (3) 397 (2004)
https://doi.org/10.1140/epjb/e2004-00396-1

Sequence Processing Neural Network with a Non-Monotonic Transfer Function

Katsuki Katayama and Tsuyoshi Horiguchi
Journal of the Physical Society of Japan 70 (5) 1300 (2001)
https://doi.org/10.1143/JPSJ.70.1300

Mean-field Monte Carlo approach to the Sherrington-Kirkpatrick model with asymmetric couplings

H. Eissfeller and M. Opper
Physical Review E 50 (2) 709 (1994)
https://doi.org/10.1103/PhysRevE.50.709

Recognition of temporal sequences of patterns using state-dependent synapses

F Zertuche, R Lopez-Pena and H Waelbroeck
Journal of Physics A: Mathematical and General 27 (17) 5879 (1994)
https://doi.org/10.1088/0305-4470/27/17/020

Spreading of damage: An unexpected disagreement between the sequential and parallel updatings in Monte Carlo simulations

F. D. Nobre, A. M. Mariz and E. S. Sousa
Physical Review Letters 69 (1) 13 (1992)
https://doi.org/10.1103/PhysRevLett.69.13

Stability and convergence of analog neural networks with multiple-time-step parallel dynamics

C. M. Marcus and R. M. Westervelt
Physical Review A 42 (4) 2410 (1990)
https://doi.org/10.1103/PhysRevA.42.2410

Heavy particle excitation of the 2s22p52P3/2-2s22p52P1/2transition in fluorine-like Fe XVIII and Ni XX

F P Keenan and R H G Reid
Journal of Physics B: Atomic, Molecular and Optical Physics 22 (11) L295 (1989)
https://doi.org/10.1088/0953-4075/22/11/006

Information processing in three-state neural networks

C. Meunier, D. Hansel and A. Verga
Journal of Statistical Physics 55 (5-6) 859 (1989)
https://doi.org/10.1007/BF01041070