La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
J.F. Fontanari , R. Köberle
J. Phys. France, 49 1 (1988) 13-23
Citations de cet article :
37 articles
Dynamics of sparse Boolean networks with multi-node and self-interactions
Christian John Hurry, Alexander Mozeika and Alessia Annibale Journal of Physics A: Mathematical and Theoretical 55 (41) 415003 (2022) https://doi.org/10.1088/1751-8121/ac9165
Symmetric sequence processing in a recurrent neural network model with a synchronous dynamics
F L Metz and W K Theumann Journal of Physics A: Mathematical and Theoretical 42 (38) 385001 (2009) https://doi.org/10.1088/1751-8113/42/38/385001
Impact of the updating scheme on stationary states of networks
F Radicchi, Y Y Ahn and H Meyer-Ortmanns Journal of Physics A: Mathematical and Theoretical 41 (22) 224010 (2008) https://doi.org/10.1088/1751-8113/41/22/224010
Instability of frozen-in states in synchronous Hebbian neural networks
F L Metz and W K Theumann Journal of Physics A: Mathematical and Theoretical 41 (26) 265001 (2008) https://doi.org/10.1088/1751-8113/41/26/265001
Phase Transition between Synchronous and Asynchronous Updating Algorithms
Filippo Radicchi, Daniele Vilone and Hildegard Meyer-Ortmanns Journal of Statistical Physics 129 (3) 593 (2007) https://doi.org/10.1007/s10955-007-9416-8
Phase Transition and Hysteresis in an Ensemble of Stochastic Spiking Neurons
Andreas Kaltenbrunner, Vicenç Gómez and Vicente López Neural Computation 19 (11) 3011 (2007) https://doi.org/10.1162/neco.2007.19.11.3011
Combined update scheme in the Sznajd model
Tu Yu-Song, A.O. Sousa, Kong Ling-Jiang and Liu Mu-Ren Physica A: Statistical Mechanics and its Applications 370 (2) 727 (2006) https://doi.org/10.1016/j.physa.2006.03.017
Synchronous versus sequential updating in the three-state Ising neural network with variable dilution
D. Bollé, R. Erichsen and T. Verbeiren Physica A: Statistical Mechanics and its Applications 368 (2) 311 (2006) https://doi.org/10.1016/j.physa.2005.12.052
Retrieval-time properties of the Little-Hopfield model and their physiological relevance
Sebastián Risau-Gusman and Marco A. P. Idiart Physical Review E 72 (4) (2005) https://doi.org/10.1103/PhysRevE.72.041913
The Blume-Emery-Griffiths neural network with synchronous updating and variable dilution
D. Bollé and J. Busquets Blanco The European Physical Journal B 47 (2) 281 (2005) https://doi.org/10.1140/epjb/e2005-00328-7
The signal-to-noise analysis of the Little–Hopfield model revisited
D Bollé, J Busquets Blanco and T Verbeiren Journal of Physics A: Mathematical and General 37 (6) 1951 (2004) https://doi.org/10.1088/0305-4470/37/6/001
Two-cycles in spin-systems: sequential versus synchronous updating in multi-state Ising-type ferromagnets
D. Bollé and J. Busquets Blanco The European Physical Journal B 42 (3) 397 (2004) https://doi.org/10.1140/epjb/e2004-00396-1
The Little–Hopfield model on a sparse random graph
I Pérez Castillo and N S Skantzos Journal of Physics A: Mathematical and General 37 (39) 9087 (2004) https://doi.org/10.1088/0305-4470/37/39/003
Neuro-Informatics and Neural Modelling
A.C.C. Coolen Handbook of Biological Physics, Neuro-Informatics and Neural Modelling 4 619 (2001) https://doi.org/10.1016/S1383-8121(01)80018-X
Neuro-Informatics and Neural Modelling
A.C.C. Coolen Handbook of Biological Physics, Neuro-Informatics and Neural Modelling 4 553 (2001) https://doi.org/10.1016/S1383-8121(01)80017-8
Hopfield model with self-coupling
Manoranjan P. Singh Physical Review E 64 (5) (2001) https://doi.org/10.1103/PhysRevE.64.051912
Sequence Processing Neural Network with a Non-Monotonic Transfer Function
Katsuki Katayama and Tsuyoshi Horiguchi Journal of the Physical Society of Japan 70 (5) 1300 (2001) https://doi.org/10.1143/JPSJ.70.1300
Random field Ising chains with synchronous dynamics
N S Skantzos and A C C Coolen Journal of Physics A: Mathematical and General 33 (9) 1841 (2000) https://doi.org/10.1088/0305-4470/33/9/309
The Ashkin-Teller neural network near saturation
D Bollé and P Kozlowski Journal of Physics A: Mathematical and General 32 (49) 8577 (1999) https://doi.org/10.1088/0305-4470/32/49/301
Cycles in a synchronous neural network
J F Fontanari Journal of Physics A: Mathematical and General 30 (19) 6655 (1997) https://doi.org/10.1088/0305-4470/30/19/007
Retrieval phase diagrams of non-monotonic Hopfield networks
Jun-ichi Inoue Journal of Physics A: Mathematical and General 29 (16) 4815 (1996) https://doi.org/10.1088/0305-4470/29/16/008
Models of Neural Networks III
Günther Palm and Friedrich T. Sommer Physics of Neural Networks, Models of Neural Networks III 79 (1996) https://doi.org/10.1007/978-1-4612-0723-8_3
On the relaxation of infinite-range spin glasses
A Scharnagl, M Opper and W Kinzel Journal of Physics A: Mathematical and General 28 (20) 5721 (1995) https://doi.org/10.1088/0305-4470/28/20/006
Mean-field Monte Carlo approach to the Sherrington-Kirkpatrick model with asymmetric couplings
H. Eissfeller and M. Opper Physical Review E 50 (2) 709 (1994) https://doi.org/10.1103/PhysRevE.50.709
Recognition of temporal sequences of patterns using state-dependent synapses
F Zertuche, R Lopez-Pena and H Waelbroeck Journal of Physics A: Mathematical and General 27 (17) 5879 (1994) https://doi.org/10.1088/0305-4470/27/17/020
Analog neural networks with local competition. II. Application to associative memory
F. R. Waugh and R. M. Westervelt Physical Review E 47 (6) 4537 (1993) https://doi.org/10.1103/PhysRevE.47.4537
Retrieval dynamics of associative memory of the Hopfield type
H Nishimori and T Ozeki Journal of Physics A: Mathematical and General 26 (4) 859 (1993) https://doi.org/10.1088/0305-4470/26/4/013
H. Nishimori and I. Opris 353 (1993) https://doi.org/10.1109/ICNN.1993.298582
Spreading of damage: An unexpected disagreement between the sequential and parallel updatings in Monte Carlo simulations
F. D. Nobre, A. M. Mariz and E. S. Sousa Physical Review Letters 69 (1) 13 (1992) https://doi.org/10.1103/PhysRevLett.69.13
Stochastic Analysis of Synchronous Neural Networks with Asymmetric Weights
O Bernier Europhysics Letters (EPL) 16 (6) 531 (1991) https://doi.org/10.1209/0295-5075/16/6/004
Neural network modelling
J W Clark Physics in Medicine and Biology 36 (10) 1259 (1991) https://doi.org/10.1088/0031-9155/36/10/001
Stability and convergence of analog neural networks with multiple-time-step parallel dynamics
C. M. Marcus and R. M. Westervelt Physical Review A 42 (4) 2410 (1990) https://doi.org/10.1103/PhysRevA.42.2410
Application of Polysilicon in Advanced IC - Technologies
Herbert Kabza, Thomas F. Meister and Hans Schaber MRS Proceedings 182 (1990) https://doi.org/10.1557/PROC-182-247
Heavy particle excitation of the 2s22p52P3/2-2s22p52P1/2transition in fluorine-like Fe XVIII and Ni XX
F P Keenan and R H G Reid Journal of Physics B: Atomic, Molecular and Optical Physics 22 (11) L295 (1989) https://doi.org/10.1088/0953-4075/22/11/006
Neural networks as content addressable memories and learning machines
Roland Köberle Computer Physics Communications 56 (1) 43 (1989) https://doi.org/10.1016/0010-4655(89)90051-9
Information processing in three-state neural networks
C. Meunier, D. Hansel and A. Verga Journal of Statistical Physics 55 (5-6) 859 (1989) https://doi.org/10.1007/BF01041070
Retrieval via non-equilibrium states in neural networks
J F Fontanari and R Koberle Journal of Physics A: Mathematical and General 21 (12) L667 (1988) https://doi.org/10.1088/0305-4470/21/12/009