La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
G.I. Sivashinsky , P. Clavin
J. Phys. France, 48 2 (1987) 193-198
Citations de cet article :
73 articles
Influence of gas expansion on the velocity and stability limits of stationary curved flames in channels
Ruixue Feng and Damir Valiev Combustion Science and Technology 196 (5) 716 (2024) https://doi.org/10.1080/00102202.2022.2098019
Nonlinear dynamics of upward propagating flames
Mariam Battikh, Elias Al Sarraf, Basile Radisson, Christophe Almarcha and Bruno Denet Physical Review E 107 (6) (2023) https://doi.org/10.1103/PhysRevE.107.065110
Nonlinear analysis of flame hydrodynamic instability at large gas expansion ratio
Sergey Minaev and Vladimir Gubernov Combustion Theory and Modelling 26 (4) 654 (2022) https://doi.org/10.1080/13647830.2022.2037720
Convective Velocity Perturbations and Excess Gain in Flame Response as a Result of Flame-Flow Feedback
Thomas Steinbacher and Wolfgang Polifke Fluids 7 (2) 61 (2022) https://doi.org/10.3390/fluids7020061
Combustion Physics
Michael A. Liberman Combustion Physics 219 (2021) https://doi.org/10.1007/978-3-030-85139-2_8
Nonlinear dynamics of flame fronts with large-scale stabilizing effects
Basile Radisson, Bruno Denet and Christophe Almarcha Physical Review E 103 (6) (2021) https://doi.org/10.1103/PhysRevE.103.063104
The effect of pressure on the hydrodynamic stability limit of premixed flames
Antonio Attili, Rachele Lamioni, Lukas Berger, et al. Proceedings of the Combustion Institute 38 (2) 1973 (2021) https://doi.org/10.1016/j.proci.2020.06.091
Complex network analysis of the gravity effect on premixed flames propagating in a Hele-Shaw cell
Yuji Nomi, Hiroshi Gotoda, Shuya Kandani and Christophe Almarcha Physical Review E 103 (2) (2021) https://doi.org/10.1103/PhysRevE.103.022218
Experimental and numerical Lattice-Boltzmann investigation of the Darrieus–Landau instability
Muhammad Tayyab, Basile Radisson, Christophe Almarcha, Bruno Denet and Pierre Boivin Combustion and Flame 221 103 (2020) https://doi.org/10.1016/j.combustflame.2020.07.030
Pressure-induced Hydrodynamic Instability in Premixed Methane-Air Slot Flames
Rachele Lamioni, Pasquale Eduardo Lapenna, Lukas Berger, et al. Combustion Science and Technology 192 (11) 1998 (2020) https://doi.org/10.1080/00102202.2020.1768081
Nonlinear dynamics of premixed flames: from deterministic stages to stochastic influence
B. Radisson, B. Denet and C. Almarcha Journal of Fluid Mechanics 903 (2020) https://doi.org/10.1017/jfm.2020.562
A direct numerical simulation study of the influence of flame-generated vorticity on reaction-zone-surface area in weakly turbulent premixed combustion
A. N. Lipatnikov, V. A. Sabelnikov, S. Nishiki and T. Hasegawa Physics of Fluids 31 (5) (2019) https://doi.org/10.1063/1.5094976
Numerical study of strongly-nonlinear regimes of steady premixed flame propagation. The effect of thermal gas expansion and finite-front-thickness effects
Kirill A. Kazakov and Oleg G. Kharlanov Combustion Theory and Modelling 22 (5) 835 (2018) https://doi.org/10.1080/13647830.2018.1458994
Interface dynamics, pole trajectories, and cell size statistics
C. Almarcha, B. Radisson, E. Al Sarraf, et al. Physical Review E 98 (3) (2018) https://doi.org/10.1103/PhysRevE.98.030202
Premixed flame propagation in vertical tubes
Kirill A. Kazakov Physics of Fluids 28 (4) (2016) https://doi.org/10.1063/1.4944684
On colliding spherical flames: Morphology, corner dynamics, and flame-generated vorticity
Sheng Yang, Delin Zhu and Chung K. Law Combustion and Flame 167 444 (2016) https://doi.org/10.1016/j.combustflame.2015.10.029
Premixed-flame shapes and polynomials
Bruno Denet and Guy Joulin Physica D: Nonlinear Phenomena 292-293 46 (2015) https://doi.org/10.1016/j.physd.2014.10.007
Shapes and speeds of steady forced premixed flames
Guy Joulin and Bruno Denet Physical Review E 89 (6) (2014) https://doi.org/10.1103/PhysRevE.89.063001
Resolvent methods for steady premixed flame shapes governed by the Zhdanov–Trubnikov equation
Gaëtan Borot, Bruno Denet and Guy Joulin Journal of Statistical Mechanics: Theory and Experiment 2012 (10) P10023 (2012) https://doi.org/10.1088/1742-5468/2012/10/P10023
Flame wrinkles from the Zhdanov–Trubnikov equation
Guy Joulin and Bruno Denet Physics Letters A 376 (22) 1797 (2012) https://doi.org/10.1016/j.physleta.2012.03.062
Assessment of the Evolution Equation Modelling approach for three-dimensional expanding wrinkled premixed flames
Eric Albin and Yves D’Angelo Combustion and Flame 159 (5) 1932 (2012) https://doi.org/10.1016/j.combustflame.2011.12.019
On third order density contrast expansion of the evolution equation for wrinkled unsteady premixed flames
Gaël Boury and Yves D’Angelo International Journal of Non-Linear Mechanics 46 (9) 1213 (2011) https://doi.org/10.1016/j.ijnonlinmec.2011.05.018
Wrinkled flames and geometrical stretch
Bruno Denet and Guy Joulin Physical Review E 84 (1) (2011) https://doi.org/10.1103/PhysRevE.84.016315
Premixed Flame Propagation in Channels of Varying Width
Hazem El-Rabii, Guy Joulin and Kirill A. Kazakov SIAM Journal on Applied Mathematics 70 (8) 3287 (2010) https://doi.org/10.1137/100790252
Potential-flow models for channelled two-dimensional premixed flames around near-circular obstacles
G. Joulin, B. Denet and H. El-Rabii Physical Review E 81 (1) (2010) https://doi.org/10.1103/PhysRevE.81.016314
Stability analysis of confined V-shaped flames in high-velocity streams
Hazem El-Rabii, Guy Joulin and Kirill A. Kazakov Physical Review E 81 (6) (2010) https://doi.org/10.1103/PhysRevE.81.066312
On-shell description of unsteady flames
GUY JOULIN, HAZEM EL-RABII and KIRILI A. KAZAKOV Journal of Fluid Mechanics 608 217 (2008) https://doi.org/10.1017/S0022112008002140
Nonperturbative Approach to the Nonlinear Dynamics of Two-Dimensional Premixed Flames
Hazem El-Rabii, Guy Joulin and Kirill A. Kazakov Physical Review Letters 100 (17) (2008) https://doi.org/10.1103/PhysRevLett.100.174501
Sivashinsky equation for corrugated flames in the large-wrinkle limit
Guy Joulin and Bruno Denet Physical Review E 78 (1) (2008) https://doi.org/10.1103/PhysRevE.78.016315
Eric Albin and Yves D'Angelo 1 (2007) https://doi.org/10.4271/2007-24-0039
Exact Equation for Curved Stationary Flames with Arbitrary Gas Expansion
Kirill A. Kazakov Physical Review Letters 94 (9) (2005) https://doi.org/10.1103/PhysRevLett.94.094501
LOW VORTICITY AND SMALL GAS EXPANSION IN PREMIXED FLAMES
BRUNO DENET and VITALY BYCHKOV Combustion Science and Technology 177 (8) 1543 (2005) https://doi.org/10.1080/00102200590956687
Molecular transport effects on turbulent flame propagation and structure
A.N. Lipatnikov and J. Chomiak Progress in Energy and Combustion Science 31 (1) 1 (2005) https://doi.org/10.1016/j.pecs.2004.07.001
On-shell description of stationary flames
Kirill A. Kazakov Physics of Fluids 17 (3) (2005) https://doi.org/10.1063/1.1864132
Instabilities of ablation fronts in inertial confinement fusion: A comparison with flames
P. Clavin and L. Masse Physics of Plasmas 11 (2) 690 (2004) https://doi.org/10.1063/1.1634969
Nonlinear model equation for three-dimensional Bunsen flames
Bruno Denet Physics of Fluids 16 (4) 1149 (2004) https://doi.org/10.1063/1.1652692
Mean cell wavelengths of wrinkled premixed flames in weak gravity fields: Spontaneous evolutions
Gaël Boury, Pierre Cambray and Guy Joulin 2 Combustion Theory and Modelling 8 (4) 811 (2004) https://doi.org/10.1088/1364-7830/8/4/008
Numerical studies of curved stationary flames in wide tubes
Michael A Liberman, Mikhail F Ivanov, Oleg E Peil, Damir M Valiev and Lars-Erik Eriksson Combustion Theory and Modelling 7 (4) 653 (2003) https://doi.org/10.1088/1364-7830/7/4/004
Nonlinear response of premixed-flame fronts to localized random forcing in the presence of a strong tangential blowing
Gaël Boury and Guy Joulin Combustion Theory and Modelling 6 (2) 243 (2002) https://doi.org/10.1088/1364-7830/6/2/306
Effect of Vorticity Production on the Structure and Velocity of Curved Flames
Kirill A. Kazakov and Michael A. Liberman Physical Review Letters 88 (6) (2002) https://doi.org/10.1103/PhysRevLett.88.064502
Potential model of a two-dimensional Bunsen flame
Bruno Denet Physics of Fluids 14 (10) 3577 (2002) https://doi.org/10.1063/1.1504448
Some developments in premixed combustion modeling
Gregory I. Sivashinsky Proceedings of the Combustion Institute 29 (2) 1737 (2002) https://doi.org/10.1016/S1540-7489(02)80213-9
Two–Dimensional Stability of the “Pole” Solutions of the Sivashinsky Equation
S. S. Minaev Combustion, Explosion and Shock Waves 37 (3) 255 (2001) https://doi.org/10.1023/A:1017563604123
Comparison of experiments and a nonlinear model equation for spatially developing flame instability
G. Searby, J.-M. Truffaut and G. Joulin Physics of Fluids 13 (11) 3270 (2001) https://doi.org/10.1063/1.1407815
Coherent Structures in Complex Systems
Guy Joulin, Gaël Boury, Pierre Cambray, Yves D’Angelo and Karl Joulain Lecture Notes in Physics, Coherent Structures in Complex Systems 567 127 (2001) https://doi.org/10.1007/3-540-44698-2_9
Modification of the turbulent burning velocity by gas expansion
N. Peters, H. Wenzel and F.A. Williams Proceedings of the Combustion Institute 28 (1) 235 (2000) https://doi.org/10.1016/S0082-0784(00)80216-7
On a Scaling Law for Coarsening Cells of Premixed Flames: an Approach to Fractalization
PIERRE CAMBRAY and GUY JOULIN∗ Combustion Science and Technology 161 (1) 139 (2000) https://doi.org/10.1080/00102200008935815
Dynamics of combustion fronts in premixed gases: From flames to detonations
Paul Clavin Proceedings of the Combustion Institute 28 (1) 569 (2000) https://doi.org/10.1016/S0082-0784(00)80257-X
On model evolution equations for the whole surface of three-dimensional expanding wrinkled premixed flames
Yves D'angelo, Guy Joulin and Gaël Boury Combustion Theory and Modelling 4 (3) 317 (2000) https://doi.org/10.1088/1364-7830/4/3/305
On Hydrodynamic Instability of Stretched Flames
Y. Kortsarts, I. Brailovsky and G. I. Sivashinsky Combustion Science and Technology 123 (1-6) 207 (1997) https://doi.org/10.1080/00102209708935628
A nonlinear model for hydrodynamic instability of an expanding flame
S. S. Minaev, E. A. Pirogov and O. V. Sharypov Combustion, Explosion, and Shock Waves 32 (5) 481 (1996) https://doi.org/10.1007/BF01998569
Coalescence Problems in the Theory of Expanding Wrinkled Premixed Flames
PIERRE CAMBRAY, KARL JOULAIN and GUY JOULIN Combustion Science and Technology 112 (1) 271 (1996) https://doi.org/10.1080/00102209608951961
Self-acceleration of nuclear flames in supernovae
S. I. Blinnikov, P. V. Sasorov and S. E. Woosley Space Science Reviews 74 (3-4) 299 (1995) https://doi.org/10.1007/BF00751416
Nonlinear hydrodynamic instability of expanding flames: Intrinsic dynamics
Guy Joulin Physical Review E 50 (3) 2030 (1994) https://doi.org/10.1103/PhysRevE.50.2030
Unsteady potential flows computation by cellular automata: The premixed flame instability
P. L. García-Ybarra, A. López-Martín, J. C. Antoranz and J. L. Castillo Transport Theory and Statistical Physics 23 (1-3) 173 (1994) https://doi.org/10.1080/00411459408203861
Laminar Premixed Flame Dynamics: A Comparison of Model and Complete Equations
S. DENET and J.-L. BONINO Combustion Science and Technology 99 (4-6) 235 (1994) https://doi.org/10.1080/00102209408935435
On Non-Linear Instabilities of Cellular Premixed Flames
BRUNO DENET Combustion Science and Technology 92 (1-3) 123 (1993) https://doi.org/10.1080/00102209308907665
Growth Patterns in Physical Sciences and Biology
J. C. Antoranz, A. López-Martín, J. L. Castillo and P. L. García-Ybarra NATO ASI Series, Growth Patterns in Physical Sciences and Biology 304 119 (1993) https://doi.org/10.1007/978-1-4615-2852-4_13
On the linear hydrodynamic stability and response of premixed flames in stagnation-point flows
G. Joulin and G.I. Sivashinsky Symposium (International) on Combustion 24 (1) 37 (1992) https://doi.org/10.1016/S0082-0784(06)80009-3
On a Tentative, Approximate Evolution Equation for Markedly Wrinkled Premixed Flames
GUY JOULIN and PIERRE CAMBRAY Combustion Science and Technology 81 (4-6) 243 (1992) https://doi.org/10.1080/00102209208951805
On moderately-forced premixed flames
Pierre Cambray and Guy Joulin Symposium (International) on Combustion 24 (1) 61 (1992) https://doi.org/10.1016/S0082-0784(06)80012-3
Integral method for study of hydrodynamic stability of a laminar flame
S. K. Aslanov and V. E. Volkov Combustion, Explosion, and Shock Waves 27 (5) 553 (1991) https://doi.org/10.1007/BF00784941
Dynamical Issues in Combustion Theory
Michael L. Frankel The IMA Volumes in Mathematics and its Applications, Dynamical Issues in Combustion Theory 35 107 (1991) https://doi.org/10.1007/978-1-4612-0947-8_5
Growth and Form
P. L. García-Ybarra, J. C. Antoranz and J. L. Castillo NATO ASI Series, Growth and Form 276 253 (1991) https://doi.org/10.1007/978-1-4684-1357-1_24
Nitramine propellant ignition and combustion research
M.H. Alexander, P.J. Dagdigian, M.E. Jacox, et al. Progress in Energy and Combustion Science 17 (4) 263 (1991) https://doi.org/10.1016/0360-1285(91)90005-8
Deuterium isotope effects during the thermal decomposition of 1,4-butanediammonium dinitrate and selected composites with ammonium and potassium nitrates
R. L. McKenney, S. R. Struck, D. S. Ellison and S. D. Maegerlein Journal of Energetic Materials 8 (3) 237 (1990) https://doi.org/10.1080/07370659008012574
An equation of surface dynamics modeling flame fronts as density discontinuities in potential flows
M. L. Frankel Physics of Fluids A: Fluid Dynamics 2 (10) 1879 (1990) https://doi.org/10.1063/1.857662
Dissipative Structures in Transport Processes and Combustion
G. Joulin Springer Series in Synergetics, Dissipative Structures in Transport Processes and Combustion 48 20 (1990) https://doi.org/10.1007/978-3-642-84230-6_3
Turbulent Reactive Flows
Paul Clavin and Guy Joulin Lecture Notes in Engineering, Turbulent Reactive Flows 40 213 (1989) https://doi.org/10.1007/978-1-4613-9631-4_13
The protonic conductivity of heavily KOH-doped ice
A. V. Zaretskii, V. F. Petrenko and V. A. Chesnakov Physica Status Solidi (a) 109 (2) 373 (1988) https://doi.org/10.1002/pssa.2211090202
Dynamics of Reactive Systems Part I: Flames; Part II: Heterogeneous Combustion and Applications
Dynamics of Reactive Systems Part I: Flames; Part II: Heterogeneous Combustion and Applications 266 (1988) https://doi.org/10.2514/5.9781600865879.0266.0274
On a Model for the Response of Unstable Premixed Flames to Turbulence
GUY JOU LIN Combustion Science and Technology 60 (1-3) 1 (1988) https://doi.org/10.1080/00102208808923972
Disorder and Mixing
Paul Clavin Disorder and Mixing 293 (1988) https://doi.org/10.1007/978-94-009-2825-1_25