La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
M. Mézard , J.P. Nadal , G. Toulouse
J. Phys. France, 47 9 (1986) 1457-1462
Citations de cet article :
111 articles | Pages :
Danil Tyulmankov 1 (2025) https://doi.org/10.1016/B978-0-443-15754-7.00078-X
La vie et l’œuvre de Gérard Toulouse
Bernard Derrida, Marc Mézard, Jean-Pierre Nadal and Yves Pomeau Comptes Rendus. Physique 26 (G1) 253 (2025) https://doi.org/10.5802/crphys.240
Glassy dynamics in deep neural networks: A structural comparison
Max Kerr Winter and Liesbeth M. C. Janssen Physical Review Research 7 (2) (2025) https://doi.org/10.1103/PhysRevResearch.7.023010
Nicolas Brunel 82 (2025) https://doi.org/10.1016/B978-0-443-15754-7.00089-4
Gianluigi Mongillo 103 (2025) https://doi.org/10.1016/B978-0-443-15754-7.00075-4
Krithika Mohan, Ulises Pereira-Obilinovic, Stanislav Srednyak, Yali Amit, Nicolas Brunel and David Freedman (2024) https://doi.org/10.1101/2024.01.05.574412
Attractor neural networks with double well synapses
Yu Feng, Nicolas Brunel and Thomas Serre PLOS Computational Biology 20 (2) e1011354 (2024) https://doi.org/10.1371/journal.pcbi.1011354
Forgetting Leads to Chaos in Attractor Networks
Ulises Pereira-Obilinovic, Johnatan Aljadeff and Nicolas Brunel Physical Review X 13 (1) (2023) https://doi.org/10.1103/PhysRevX.13.011009
Yu Feng and Nicolas Brunel (2023) https://doi.org/10.1101/2023.07.17.549266
Marta Boscaglia, Chiara Gastaldi, Wulfram Gerstner and Rodrigo Quian Quiroga (2023) https://doi.org/10.1101/2023.12.01.569560
A dynamic attractor network model of memory formation, reinforcement and forgetting
Marta Boscaglia, Chiara Gastaldi, Wulfram Gerstner, Rodrigo Quian Quiroga and Marcus Kaiser PLOS Computational Biology 19 (12) e1011727 (2023) https://doi.org/10.1371/journal.pcbi.1011727
Bayesian reconstruction of memories stored in neural networks from their connectivity
Sebastian Goldt, Florent Krzakala, Lenka Zdeborová, Nicolas Brunel and Lyle J. Graham PLOS Computational Biology 19 (1) e1010813 (2023) https://doi.org/10.1371/journal.pcbi.1010813
Learning and Organization of Memory for Evolving Patterns
Oskar H. Schnaack, Luca Peliti and Armita Nourmohammad Physical Review X 12 (2) (2022) https://doi.org/10.1103/PhysRevX.12.021063
Stochastic consolidation of lifelong memory
Nimrod Shaham, Jay Chandra, Gabriel Kreiman and Haim Sompolinsky Scientific Reports 12 (1) (2022) https://doi.org/10.1038/s41598-022-16407-9
Supervised learning in the presence of concept drift: a modelling framework
M. Straat, F. Abadi, Z. Kan, et al. Neural Computing and Applications 34 (1) 101 (2022) https://doi.org/10.1007/s00521-021-06035-1
Nimrod Shaham, Jay Chandra, Gabriel Kreiman and Haim Sompolinsky (2021) https://doi.org/10.1101/2021.08.24.457446
Oskar H Schnaack, Luca Peliti and Armita Nourmohammad (2021) https://doi.org/10.1101/2021.10.27.466120
External Stimuli on Neural Networks: Analytical and Numerical Approaches
Evaldo M. F. Curado, Nilo B. Melgar and Fernando D. Nobre Entropy 23 (8) 1034 (2021) https://doi.org/10.3390/e23081034
Weinan Sun, Madhu Advani, Nelson Spruston, Andrew Saxe and James E. Fitzgerald (2021) https://doi.org/10.1101/2021.10.13.463791
Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization
Michael Biehl, Fthi Abadi, Christina Göpfert and Barbara Hammer Advances in Intelligent Systems and Computing, Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization 976 210 (2020) https://doi.org/10.1007/978-3-030-19642-4_21
Quality Solution of Logic Programming in Hopfield Neural Network
M S M Kasihmuddin, M A Mansor, S Alzaeemi, M F M Basir and S Sathasivam Journal of Physics: Conference Series 1366 (1) 012094 (2019) https://doi.org/10.1088/1742-6596/1366/1/012094
Principal component analysis of the magnetic transition in the three-dimensional Fermi-Hubbard model
Ehsan Khatami Journal of Physics: Conference Series 1290 (1) 012006 (2019) https://doi.org/10.1088/1742-6596/1290/1/012006
Forgetting Memories and Their Attractiveness
Enzo Marinari Neural Computation 31 (3) 503 (2019) https://doi.org/10.1162/neco_a_01162
Attractor Dynamics in Networks with Learning Rules Inferred from In Vivo Data
Ulises Pereira and Nicolas Brunel Neuron 99 (1) 227 (2018) https://doi.org/10.1016/j.neuron.2018.05.038
Statistical Mechanics of On-Line Learning Under Concept Drift
Michiel Straat, Fthi Abadi, Christina Göpfert, Barbara Hammer and Michael Biehl Entropy 20 (10) 775 (2018) https://doi.org/10.3390/e20100775
Principal component analysis for fermionic critical points
Natanael C. Costa, Wenjian Hu, Z. J. Bai, Richard T. Scalettar and Rajiv R. P. Singh Physical Review B 96 (19) (2017) https://doi.org/10.1103/PhysRevB.96.195138
Ulises Pereira and Nicolas Brunel (2017) https://doi.org/10.1101/199521
A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks
Alireza Alemi, Carlo Baldassi, Nicolas Brunel, Riccardo Zecchina and Peter E. Latham PLOS Computational Biology 11 (8) e1004439 (2015) https://doi.org/10.1371/journal.pcbi.1004439
Long-Term Memory Stabilized by Noise-Induced Rehearsal
Yi Wei and Alexei A. Koulakov The Journal of Neuroscience 34 (47) 15804 (2014) https://doi.org/10.1523/JNEUROSCI.3929-12.2014
Computational modelling of memory retention from synapse to behaviour
Mark C W van Rossum and Maria Shippi Journal of Statistical Mechanics: Theory and Experiment 2013 (03) P03007 (2013) https://doi.org/10.1088/1742-5468/2013/03/P03007
Synaptic Scaling Enables Dynamically Distinct Short- and Long-Term Memory Formation
Christian Tetzlaff, Christoph Kolodziejski, Marc Timme, et al. PLoS Computational Biology 9 (10) e1003307 (2013) https://doi.org/10.1371/journal.pcbi.1003307
Embedding Responses in Spontaneous Neural Activity Shaped through Sequential Learning
Tomoki Kurikawa, Kunihiko Kaneko and Tim Behrens PLoS Computational Biology 9 (3) e1002943 (2013) https://doi.org/10.1371/journal.pcbi.1002943
Time scales of memory, learning, and plasticity
Christian Tetzlaff, Christoph Kolodziejski, Irene Markelic and Florentin Wörgötter Biological Cybernetics 106 (11-12) 715 (2012) https://doi.org/10.1007/s00422-012-0529-z
Properties of Hopfield model with the zero-order synaptic decay
Ryota Miyata, Toru Aonishi, Jun Tsuzurugi and Koji Kurata Artificial Life and Robotics 17 (1) 163 (2012) https://doi.org/10.1007/s10015-012-0033-5
Soft-bound Synaptic Plasticity Increases Storage Capacity
Mark C. W. van Rossum, Maria Shippi, Adam B. Barrett and Peter E. Latham PLoS Computational Biology 8 (12) e1002836 (2012) https://doi.org/10.1371/journal.pcbi.1002836
Self-consistent signal-to-noise analysis of Hopfield model with unit replacement
Toru Aonishi, Yasunao Komatsu and Koji Kurata Neural Networks 23 (10) 1180 (2010) https://doi.org/10.1016/j.neunet.2010.06.006
Associative Memory for Online Learning in Noisy Environments Using Self-Organizing Incremental Neural Network
A. Sudo, A. Sato and O. Hasegawa IEEE Transactions on Neural Networks 20 (6) 964 (2009) https://doi.org/10.1109/TNN.2009.2014374
A property of neural networks of associative memory with replacing units
Akira Date and Koji Kurata Artificial Life and Robotics 12 (1-2) 291 (2008) https://doi.org/10.1007/s10015-007-0484-2
Inhomogeneities in Heteroassociative Memories with Linear Learning Rules
David C. Sterratt and David Willshaw Neural Computation 20 (2) 311 (2008) https://doi.org/10.1162/neco.2007.08-06-301
Methods and Models in Neurophysics, École d' été de Physique des Houches Session LXXX
Nicolas Brunel Les Houches, Methods and Models in Neurophysics, École d' été de Physique des Houches Session LXXX 80 407 (2005) https://doi.org/10.1016/S0924-8099(05)80016-2
A. Ballarin, S. Gervasi, F. Giancarli and F. Cecere 593 (2000) https://doi.org/10.1109/IJCNN.2000.861381
Categorization in a Hopfield network trained with weighted examples: Extensive number of concepts
Rogério L. Costa and Alba Theumann Physical Review E 61 (5) 4860 (2000) https://doi.org/10.1103/PhysRevE.61.4860
Categorization in a Hopfield network trained with weighted examples. (I). Finite number of concepts
Rogério L. Costa and Alba Theumann Physica A: Statistical Mechanics and its Applications 268 (3-4) 499 (1999) https://doi.org/10.1016/S0378-4371(99)00043-6
Recall of old and recent information
Vipin Srivastava, Meena Vipin and Enzo Granato Network: Computation in Neural Systems 9 (2) 159 (1998) https://doi.org/10.1088/0954-898X_9_2_001
Recall of old and recent information
Vipin Srivastava, Meena Vipin and Enzo Granato Network: Computation in Neural Systems 9 (2) 159 (1998) https://doi.org/10.1088/0954-898X/9/2/001
Paramagnetic unlearning in neural network models
Kazuo Nokura Physical Review E 54 (5) 5571 (1996) https://doi.org/10.1103/PhysRevE.54.5571
A memory model with novel behaviour in sequential learning
P Kahn, K Wong and D Sherrington Network: Computation in Neural Systems 6 (3) 415 (1995) https://doi.org/10.1088/0954-898X/6/3/007
Domain Theory in Learning Processes
A. Edalat Electronic Notes in Theoretical Computer Science 1 114 (1995) https://doi.org/10.1016/S1571-0661(04)80007-0
Models of Neural Networks I
J. Leo van Hemmen and Reimer Kühn Physics of Neural Networks, Models of Neural Networks I 1 (1995) https://doi.org/10.1007/978-3-642-79814-6_1
A memory model with novel behaviour in sequential learning
P E Kahn, K Y M Wong and D Sherrington Network: Computation in Neural Systems 6 (3) 415 (1995) https://doi.org/10.1088/0954-898X_6_3_007
Effects of temporary synaptic strengthening and residual cell potential in the retrieval of patterns
Tohru Nakano and Osamu Moriyama Network: Computation in Neural Systems 5 (2) 229 (1994) https://doi.org/10.1088/0954-898X_5_2_007
Effects of temporary synaptic strengthening and residual cell potential in the retrieval of patterns
Tohru Nakano and Osamu Moriyama Network: Computation in Neural Systems 5 (2) 229 (1994) https://doi.org/10.1088/0954-898X/5/2/007
X. Li and W.S. Wong 4 2454 (1994) https://doi.org/10.1109/ICNN.1994.374605
Stochastic neural networks with the weighted Hebb rule
Caren Marzban and Raju Viswanathan Physics Letters A 191 (1-2) 127 (1994) https://doi.org/10.1016/0375-9601(94)90570-3
Multifractality in forgetful memories
U. Behn, J.L. van Hemmen, R. Kühn, A. Lange and V.A. Zagrebnov Physica D: Nonlinear Phenomena 68 (3-4) 401 (1993) https://doi.org/10.1016/0167-2789(93)90133-L
ICANN ’93
Shotaro Akaho ICANN ’93 707 (1993) https://doi.org/10.1007/978-1-4471-2063-6_198
Learning drifting concepts with neural networks
M Biehl and H Schwarze Journal of Physics A: Mathematical and General 26 (11) 2651 (1993) https://doi.org/10.1088/0305-4470/26/11/014
The statistical mechanics of learning a rule
Timothy L. H. Watkin, Albrecht Rau and Michael Biehl Reviews of Modern Physics 65 (2) 499 (1993) https://doi.org/10.1103/RevModPhys.65.499
Constraints on learning in dynamic synapses
Daniel J Amit and Stefano Fusi Network: Computation in Neural Systems 3 (4) 443 (1992) https://doi.org/10.1088/0954-898X_3_4_008
Neural network with hierarchical clustering near saturation
M A Pires Idiart and A Theumann Journal of Physics A: Mathematical and General 25 (4) 779 (1992) https://doi.org/10.1088/0305-4470/25/4/017
Constraints on learning in dynamic synapses
Daniel Amit and Stefano Fusi Network: Computation in Neural Systems 3 (4) 443 (1992) https://doi.org/10.1088/0954-898X/3/4/008
On-Line Learning of a Time-Dependent Rule
M Biehl and H Schwarze Europhysics Letters (EPL) 20 (8) 733 (1992) https://doi.org/10.1209/0295-5075/20/8/012
Neural network models of list learning
Neil Burgess, J Shapiro and M Moore Network: Computation in Neural Systems 2 (4) 399 (1991) https://doi.org/10.1088/0954-898X/2/4/005
Unsupervised dynamic learning in layered neural networks
H J J Jonker and A C C Coolen Journal of Physics A: Mathematical and General 24 (17) 4219 (1991) https://doi.org/10.1088/0305-4470/24/17/032
Models of Neural Networks
J. Leo van Hemmen and Reimer Kühn Physics of Neural Networks, Models of Neural Networks 1 (1991) https://doi.org/10.1007/978-3-642-97171-6_1
A neural network model of working memory exhibiting primacy and recency
K Y M Wong, P E Kahn and D Sherrington Journal of Physics A: Mathematical and General 24 (5) 1119 (1991) https://doi.org/10.1088/0305-4470/24/5/025
Neural network models of list learning
Neil Burgess, J L Shapiro and M A Moore Network: Computation in Neural Systems 2 (4) 399 (1991) https://doi.org/10.1088/0954-898X_2_4_005
Statistical Mechanics of Neural Networks
B. Schürmann, J. Hollatz and U. Ramacher Lecture Notes in Physics, Statistical Mechanics of Neural Networks 368 49 (1990) https://doi.org/10.1007/3540532676_40
Learning in neural network memories
L Abbott Network: Computation in Neural Systems 1 (1) 105 (1990) https://doi.org/10.1088/0954-898X/1/1/008
Selective pattern recall in neural networks by chemical modulation
A C C Coolen and A J Noest Journal of Physics A: Mathematical and General 23 (4) 575 (1990) https://doi.org/10.1088/0305-4470/23/4/026
A. Kuh and T. Petsche 2 971 (1990) https://doi.org/10.1109/ACSSC.1990.523482
Statistical Mechanics of Neural Networks
Stam Nicolis Lecture Notes in Physics, Statistical Mechanics of Neural Networks 368 155 (1990) https://doi.org/10.1007/3540532676_47
Learning in neural network memories
L F Abbott Network: Computation in Neural Systems 1 (1) 105 (1990) https://doi.org/10.1088/0954-898X_1_1_008
Retrieval Properties of Neural Networks with Infinitely Many Marked Patterns
S Nicolis Europhysics Letters (EPL) 12 (7) 583 (1990) https://doi.org/10.1209/0295-5075/12/7/002
Neural networks as models of associative memories
N. Parga Computer Physics Communications 55 (1) 77 (1989) https://doi.org/10.1016/0010-4655(89)90065-9
Relative stability in the dynamics of a two-pattern neural net
F Pazmandi and T Geszti Journal of Physics A: Mathematical and General 22 (23) 5117 (1989) https://doi.org/10.1088/0305-4470/22/23/016
Neural networks as content addressable memories and learning machines
Roland Köberle Computer Physics Communications 56 (1) 43 (1989) https://doi.org/10.1016/0010-4655(89)90051-9
Neuronal models of cognitive functions
Jean-Pierre Changeux and Stanislas Dehaene Cognition 33 (1-2) 63 (1989) https://doi.org/10.1016/0010-0277(89)90006-1
Spin glasses and neural networks
Nestor Parga Nuclear Physics B - Proceedings Supplements 10 (1) 332 (1989) https://doi.org/10.1016/0920-5632(89)90071-6
Information processing in three-state neural networks
C. Meunier, D. Hansel and A. Verga Journal of Statistical Physics 55 (5-6) 859 (1989) https://doi.org/10.1007/BF01041070
Dynamic Interactions in Neural Networks: Models and Data
Shigeru Shinomoto Research Notes in Neural Computing, Dynamic Interactions in Neural Networks: Models and Data 1 73 (1989) https://doi.org/10.1007/978-1-4612-4536-0_5
Morris, Rubin and Wong 199 (1988) https://doi.org/10.1109/ICNN.1988.23848
Content-addressability and learning in neural networks
B M Forrest Journal of Physics A: Mathematical and General 21 (1) 245 (1988) https://doi.org/10.1088/0305-4470/21/1/029
Layered feed-forward neural network with exactly soluble dynamics
Ronny Meir and Eytan Domany Physical Review A 37 (2) 608 (1988) https://doi.org/10.1103/PhysRevA.37.608
Iterated learning in a layered feed-forward neural network
Ronny Meir and Eytan Domany Physical Review A 37 (7) 2660 (1988) https://doi.org/10.1103/PhysRevA.37.2660
Glauber dynamics of the Little-Hopfield model
H. Rieger, M. Schreckenberg and J. Zittartz Zeitschrift f�r Physik B Condensed Matter 72 (4) 523 (1988) https://doi.org/10.1007/BF01314534
The space of interactions in neural network models
E Gardner Journal of Physics A: Mathematical and General 21 (1) 257 (1988) https://doi.org/10.1088/0305-4470/21/1/030
Optimal storage properties of neural network models
E Gardner and B Derrida Journal of Physics A: Mathematical and General 21 (1) 271 (1988) https://doi.org/10.1088/0305-4470/21/1/031
Enhancing the learning of a finite number of patterns in neural networks
J F Fontanari and R Koberle Journal of Physics A: Mathematical and General 21 (4) L253 (1988) https://doi.org/10.1088/0305-4470/21/4/012
Nonlinear neural networks. II. Information processing
J. L. van Hemmen, D. Grensing, A. Huber and R. Kühn Journal of Statistical Physics 50 (1-2) 259 (1988) https://doi.org/10.1007/BF01022995
Potts-glass models of neural networks
Ido Kanter Physical Review A 37 (7) 2739 (1988) https://doi.org/10.1103/PhysRevA.37.2739
A Short-Term Neural Network Memory
Robert J. T. Morris and Wing Shing Wong SIAM Journal on Computing 17 (6) 1103 (1988) https://doi.org/10.1137/0217071
Extensions of a solvable feed forward neural network
Ronny Meir Journal de Physique 49 (2) 201 (1988) https://doi.org/10.1051/jphys:01988004902020100
Spin glass model for a neural network : associative memories stored with unequal weights
L. Viana Journal de Physique 49 (2) 167 (1988) https://doi.org/10.1051/jphys:01988004902016700
Introduction to neural network models
B. Derrida Nuclear Physics B - Proceedings Supplements 4 673 (1988) https://doi.org/10.1016/0920-5632(88)90175-2
Stochastic Dynamics of a Layered Neural Network; Exact Solution
R Meir and E Domany Europhysics Letters (EPL) 4 (6) 645 (1987) https://doi.org/10.1209/0295-5075/4/6/002
Memory maintenance in neural networks
S Shinomoto Journal of Physics A: Mathematical and General 20 (18) L1305 (1987) https://doi.org/10.1088/0305-4470/20/18/015
Response
: Computing with Neural Networks
John J. Hopfield and David W. Tank Science 235 (4793) 1228 (1987) https://doi.org/10.1126/science.235.4793.1228
Maximum Storage Capacity in Neural Networks
E Gardner Europhysics Letters (EPL) 4 (4) 481 (1987) https://doi.org/10.1209/0295-5075/4/4/016
Information storage in neural networks with low levels of activity
Daniel J. Amit, Hanoch Gutfreund and H. Sompolinsky Physical Review A 35 (5) 2293 (1987) https://doi.org/10.1103/PhysRevA.35.2293
Pages :
1 à 100 sur 111 articles