Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

La vie et l’œuvre de Gérard Toulouse

Bernard Derrida, Marc Mézard, Jean-Pierre Nadal and Yves Pomeau
Comptes Rendus. Physique 26 (G1) 253 (2025)
https://doi.org/10.5802/crphys.240

A dynamic attractor network model of memory formation, reinforcement and forgetting

Marta Boscaglia, Chiara Gastaldi, Wulfram Gerstner, Rodrigo Quian Quiroga and Marcus Kaiser
PLOS Computational Biology 19 (12) e1011727 (2023)
https://doi.org/10.1371/journal.pcbi.1011727

Bayesian reconstruction of memories stored in neural networks from their connectivity

Sebastian Goldt, Florent Krzakala, Lenka Zdeborová, Nicolas Brunel and Lyle J. Graham
PLOS Computational Biology 19 (1) e1010813 (2023)
https://doi.org/10.1371/journal.pcbi.1010813

External Stimuli on Neural Networks: Analytical and Numerical Approaches

Evaldo M. F. Curado, Nilo B. Melgar and Fernando D. Nobre
Entropy 23 (8) 1034 (2021)
https://doi.org/10.3390/e23081034

Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization

Michael Biehl, Fthi Abadi, Christina Göpfert and Barbara Hammer
Advances in Intelligent Systems and Computing, Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization 976 210 (2020)
https://doi.org/10.1007/978-3-030-19642-4_21

Quality Solution of Logic Programming in Hopfield Neural Network

M S M Kasihmuddin, M A Mansor, S Alzaeemi, M F M Basir and S Sathasivam
Journal of Physics: Conference Series 1366 (1) 012094 (2019)
https://doi.org/10.1088/1742-6596/1366/1/012094

Statistical Mechanics of On-Line Learning Under Concept Drift

Michiel Straat, Fthi Abadi, Christina Göpfert, Barbara Hammer and Michael Biehl
Entropy 20 (10) 775 (2018)
https://doi.org/10.3390/e20100775

Principal component analysis for fermionic critical points

Natanael C. Costa, Wenjian Hu, Z. J. Bai, Richard T. Scalettar and Rajiv R. P. Singh
Physical Review B 96 (19) (2017)
https://doi.org/10.1103/PhysRevB.96.195138

A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks

Alireza Alemi, Carlo Baldassi, Nicolas Brunel, Riccardo Zecchina and Peter E. Latham
PLOS Computational Biology 11 (8) e1004439 (2015)
https://doi.org/10.1371/journal.pcbi.1004439

Synaptic Scaling Enables Dynamically Distinct Short- and Long-Term Memory Formation

Christian Tetzlaff, Christoph Kolodziejski, Marc Timme, et al.
PLoS Computational Biology 9 (10) e1003307 (2013)
https://doi.org/10.1371/journal.pcbi.1003307

Embedding Responses in Spontaneous Neural Activity Shaped through Sequential Learning

Tomoki Kurikawa, Kunihiko Kaneko and Tim Behrens
PLoS Computational Biology 9 (3) e1002943 (2013)
https://doi.org/10.1371/journal.pcbi.1002943

Time scales of memory, learning, and plasticity

Christian Tetzlaff, Christoph Kolodziejski, Irene Markelic and Florentin Wörgötter
Biological Cybernetics 106 (11-12) 715 (2012)
https://doi.org/10.1007/s00422-012-0529-z

Properties of Hopfield model with the zero-order synaptic decay

Ryota Miyata, Toru Aonishi, Jun Tsuzurugi and Koji Kurata
Artificial Life and Robotics 17 (1) 163 (2012)
https://doi.org/10.1007/s10015-012-0033-5

Soft-bound Synaptic Plasticity Increases Storage Capacity

Mark C. W. van Rossum, Maria Shippi, Adam B. Barrett and Peter E. Latham
PLoS Computational Biology 8 (12) e1002836 (2012)
https://doi.org/10.1371/journal.pcbi.1002836

Associative Memory for Online Learning in Noisy Environments Using Self-Organizing Incremental Neural Network

A. Sudo, A. Sato and O. Hasegawa
IEEE Transactions on Neural Networks 20 (6) 964 (2009)
https://doi.org/10.1109/TNN.2009.2014374

Methods and Models in Neurophysics, École d' été de Physique des Houches Session LXXX

Nicolas Brunel
Les Houches, Methods and Models in Neurophysics, École d' été de Physique des Houches Session LXXX 80 407 (2005)
https://doi.org/10.1016/S0924-8099(05)80016-2

Categorization in a Hopfield network trained with weighted examples: Extensive number of concepts

Rogério L. Costa and Alba Theumann
Physical Review E 61 (5) 4860 (2000)
https://doi.org/10.1103/PhysRevE.61.4860

Categorization in a Hopfield network trained with weighted examples. (I). Finite number of concepts

Rogério L. Costa and Alba Theumann
Physica A: Statistical Mechanics and its Applications 268 (3-4) 499 (1999)
https://doi.org/10.1016/S0378-4371(99)00043-6

Effects of temporary synaptic strengthening and residual cell potential in the retrieval of patterns

Tohru Nakano and Osamu Moriyama
Network: Computation in Neural Systems 5 (2) 229 (1994)
https://doi.org/10.1088/0954-898X_5_2_007

Effects of temporary synaptic strengthening and residual cell potential in the retrieval of patterns

Tohru Nakano and Osamu Moriyama
Network: Computation in Neural Systems 5 (2) 229 (1994)
https://doi.org/10.1088/0954-898X/5/2/007

A neural network model of working memory exhibiting primacy and recency

K Y M Wong, P E Kahn and D Sherrington
Journal of Physics A: Mathematical and General 24 (5) 1119 (1991)
https://doi.org/10.1088/0305-4470/24/5/025

Statistical Mechanics of Neural Networks

B. Schürmann, J. Hollatz and U. Ramacher
Lecture Notes in Physics, Statistical Mechanics of Neural Networks 368 49 (1990)
https://doi.org/10.1007/3540532676_40

Information processing in three-state neural networks

C. Meunier, D. Hansel and A. Verga
Journal of Statistical Physics 55 (5-6) 859 (1989)
https://doi.org/10.1007/BF01041070

Dynamic Interactions in Neural Networks: Models and Data

Shigeru Shinomoto
Research Notes in Neural Computing, Dynamic Interactions in Neural Networks: Models and Data 1 73 (1989)
https://doi.org/10.1007/978-1-4612-4536-0_5

Glauber dynamics of the Little-Hopfield model

H. Rieger, M. Schreckenberg and J. Zittartz
Zeitschrift f�r Physik B Condensed Matter 72 (4) 523 (1988)
https://doi.org/10.1007/BF01314534

Enhancing the learning of a finite number of patterns in neural networks

J F Fontanari and R Koberle
Journal of Physics A: Mathematical and General 21 (4) L253 (1988)
https://doi.org/10.1088/0305-4470/21/4/012

Nonlinear neural networks. II. Information processing

J. L. van Hemmen, D. Grensing, A. Huber and R. Kühn
Journal of Statistical Physics 50 (1-2) 259 (1988)
https://doi.org/10.1007/BF01022995