La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
P. Meakin , R. Jullien
J. Phys. France, 46 9 (1985) 1543-1552
Citations de cet article :
92 articles
Representation of aggregates from their two-dimensional images for primary particles of different sizes
Rui Wang, Aisel Ajalova, Subash Reddy Kolan, Torsten Hoffmann, Kaicheng Chen and Evangelos Tsotsas Powder Technology 451 120465 (2025) https://doi.org/10.1016/j.powtec.2024.120465
Vesicular dust particles – light scattering and radiation pressure
R Botet, A K Sen and A Zaman Monthly Notices of the Royal Astronomical Society 540 (3) 2102 (2025) https://doi.org/10.1093/mnras/staf885
Models for Simulation of Fractal-like Particle Clusters with Prescribed Fractal Dimension
Oleksandr Tomchuk Fractal and Fractional 7 (12) 866 (2023) https://doi.org/10.3390/fractalfract7120866
Modelling Thermal Conduction in Polydispersed and Sintered Nanoparticle Aggregates
Nikolaos P. Karagiannakis, Eugene D. Skouras and Vasilis N. Burganos Nanomaterials 12 (1) 25 (2021) https://doi.org/10.3390/nano12010025
Process Description of an Unconventional Biofilm Formation by Bacterial Cells Autoagglutinating through Sticky, Long, and Peritrichate Nanofibers
Yoshihide Furuichi, Shogo Yoshimoto, Tomohiro Inaba, Nobuhiko Nomura and Katsutoshi Hori Environmental Science & Technology 54 (4) 2520 (2020) https://doi.org/10.1021/acs.est.9b06577
Modeling fractal aggregates of polydisperse particles with tunable dimension
Oleksandr V. Tomchuk, Mikhail V. Avdeev and Leonid A. Bulavin Colloids and Surfaces A: Physicochemical and Engineering Aspects 605 125331 (2020) https://doi.org/10.1016/j.colsurfa.2020.125331
Modelling Thermal Conduction in Nanoparticle Aggregates in the Presence of Surfactants
Nikolaos P. Karagiannakis, Eugene D. Skouras and Vasilis N. Burganos Nanomaterials 10 (11) 2288 (2020) https://doi.org/10.3390/nano10112288
Development, Characterization, and Utilization of Food-Grade Polymer Oleogels
M. Davidovich-Pinhas, Shai Barbut and A.G. Marangoni Annual Review of Food Science and Technology 7 (1) 65 (2016) https://doi.org/10.1146/annurev-food-041715-033225
Physical structure and thermal behavior of ethylcellulose
M. Davidovich-Pinhas, S. Barbut and A. G. Marangoni Cellulose 21 (5) 3243 (2014) https://doi.org/10.1007/s10570-014-0377-1
Cluster–cluster aggregation with particle replication and chemotaxy: a simple model for the growth of animal cells in culture
S G Alves and M L Martins Journal of Statistical Mechanics: Theory and Experiment 2010 (09) P09012 (2010) https://doi.org/10.1088/1742-5468/2010/09/P09012
Floc Cohesive Force in Reversible Aggregation: A Couette Laminar Flow Investigation
G. Frappier, B. S. Lartiges and S. Skali-Lami Langmuir 26 (13) 10475 (2010) https://doi.org/10.1021/la9046947
Spontaneous inter-particle percolation: A kinematic simulation study
J. Li, A.B. Yu, J. Bridgwater and S.L. Rough Powder Technology 203 (2) 397 (2010) https://doi.org/10.1016/j.powtec.2010.05.037
Nanostructuring of a silicon surface by laser redeposition of Si vapor
S. Lugomer, A. Maksimović, A. Karacs and A. L. Toth Journal of Applied Physics 106 (11) (2009) https://doi.org/10.1063/1.3266003
Agglomeration of fine particles subjected to centripetal compaction
R.Y. Yang, A.B. Yu, S.K. Choi, M.S. Coates and H.K. Chan Powder Technology 184 (1) 122 (2008) https://doi.org/10.1016/j.powtec.2007.08.010
Particle Breakage
Emile Pefferkorn Handbook of Powder Technology, Particle Breakage 12 741 (2007) https://doi.org/10.1016/S0167-3785(07)12020-0
Spongelike metal surface generated by laser in the semiconfined configuration
Stjepan Lugomer, Branka Mihaljević, Gabor Peto, Atilla L. Toth and Eniko’ Horvath Journal of Applied Physics 97 (7) (2005) https://doi.org/10.1063/1.1884755
Off-lattice Monte Carlo simulations of irreversible and reversible aggregation processes
S. Díez Orrite, S. Stoll and P. Schurtenberger Soft Matter 1 (5) 364 (2005) https://doi.org/10.1039/b510449a
Interactions of hairy latex particles with cationic copolymers
Pascal Borget, Françoise Lafuma and Cécile Bonnet-Gonnet Journal of Colloid and Interface Science 284 (2) 560 (2005) https://doi.org/10.1016/j.jcis.2004.10.061
Annealing two-dimensional diffusion-limited aggregates
C. I. Mendoza and G. Ramìrez-Santiago The European Physical Journal B 48 (1) 75 (2005) https://doi.org/10.1140/epjb/e2005-00370-5
Cell–cell contact and membrane spreading in an ultrasound trap
W.T Coakley, D Bazou, J Morgan, et al. Colloids and Surfaces B: Biointerfaces 34 (4) 221 (2004) https://doi.org/10.1016/j.colsurfb.2004.01.002
RESTRUCTURING DYNAMICS OF DU 145 AND LNCaP PROSTATE CANCER SPHEROIDS
HONG SONG, SHAMIK K. JAIN, RICHARD M. ENMON and KIM C. O'CONNOR In Vitro Cellular & Developmental Biology - Animal 40 (8) 262 (2004) https://doi.org/10.1290/0406038.1
Fluctuating diffusion-limited aggregates
Carlos I Mendoza and Carlos M Marques Physica A: Statistical Mechanics and its Applications 335 (3-4) 305 (2004) https://doi.org/10.1016/j.physa.2003.11.030
Simulation of microstructural evolution during isostatic compaction of monosized spheres
Lianfeng Liu Journal of Physics D: Applied Physics 36 (15) 1881 (2003) https://doi.org/10.1088/0022-3727/36/15/320
Morphological Analysis of the Effects of Ions and Ultraviolet Light on Colloidal Monolayers at the Air–Water Interface
F. Ghezzi, J.C. Earnshaw, M. Finnis and M. McCluney Journal of Colloid and Interface Science 251 (2) 288 (2002) https://doi.org/10.1006/jcis.2002.8401
Buffer-layer-assisted nanostructure growth via two-dimensional cluster–cluster aggregation
Christina Haley and J.H Weaver Surface Science 518 (3) 243 (2002) https://doi.org/10.1016/S0039-6028(02)02197-0
Effects of structural rearrangements on the rheology of rennet-induced casein particle gels
M Mellema, P Walstra, J.H.J van Opheusden and T van Vliet Advances in Colloid and Interface Science 98 (1) 25 (2002) https://doi.org/10.1016/S0001-8686(01)00089-6
Dynamic rearrangements and packing regimes in randomly deposited two-dimensional granular beds
I. Bratberg, F. Radjai and A. Hansen Physical Review E 66 (3) (2002) https://doi.org/10.1103/PhysRevE.66.031303
Internal cohesion of agglomerates
Y. Tatek, S. Stoll and E. Pefferkorn Powder Technology 115 (3) 221 (2001) https://doi.org/10.1016/S0032-5910(00)00346-6
Formation kinetics of fractal nanofiber networks in organogels
X. Y. Liu and Prashant D. Sawant Applied Physics Letters 79 (21) 3518 (2001) https://doi.org/10.1063/1.1415609
A simulation study of the effects of dynamic variables on the packing of spheres
Z.P Zhang, L.F Liu, Y.D Yuan and A.B Yu Powder Technology 116 (1) 23 (2001) https://doi.org/10.1016/S0032-5910(00)00356-9
Computer simulation of the packing of fine particles
R. Y. Yang, R. P. Zou and A. B. Yu Physical Review E 62 (3) 3900 (2000) https://doi.org/10.1103/PhysRevE.62.3900
Brownian dynamics simulation of linear chain growth
M. C. Bujan-Nunez and B. Vazquez-Varela Molecular Physics 98 (15) 1011 (2000) https://doi.org/10.1080/00268970050052060
Computer simulations of steepest descent ballistic deposition
Rémi Jullien and Paul Meakin Colloids and Surfaces A: Physicochemical and Engineering Aspects 165 (1-3) 405 (2000) https://doi.org/10.1016/S0927-7757(99)00445-8
Simulation of simultaneous aggregation and sedimentation
X. Jia, D.J. Wedlock and R.A. Williams Minerals Engineering 13 (13) 1349 (2000) https://doi.org/10.1016/S0892-6875(00)00118-7
Relating colloidal particle interactions to gel structure using Brownian dynamics simulations and the Fuchs stability ratio
M. Mellema, J. H. J. van Opheusden and T. van Vliet The Journal of Chemical Physics 111 (13) 6129 (1999) https://doi.org/10.1063/1.479956
A Historical Introduction to Computer Models for Fractal Aggregates
Paul Meakin Journal of Sol-Gel Science and Technology 15 (2) 97 (1999) https://doi.org/10.1023/A:1008731904082
Dynamic simulation of the centripetal packing of mono-sized spheres
L.F Liu, Z.P Zhang and A.B Yu Physica A: Statistical Mechanics and its Applications 268 (3-4) 433 (1999) https://doi.org/10.1016/S0378-4371(99)00106-5
David J. Wedlock, Phillip Shuff, Martin Dare-Edwards, Xiaodong Jia and Richard A. Williams 1 (1999) https://doi.org/10.4271/1999-01-1516
Quantitative Description of Nonhomogeneous Mass Distribution in Controlled Aggregation and Fragmentation of Hydrated Colloids
J. Widmaier and E. Pefferkorn Journal of Colloid and Interface Science 203 (2) 402 (1998) https://doi.org/10.1006/jcis.1998.5544
Fractal humic acids in aqueous suspensions at various concentrations, ionic strengths, and pH values
N. Senesi, F.R. Rizzi, P. Dellino and P. Acquafredda Colloids and Surfaces A: Physicochemical and Engineering Aspects 127 (1-3) 57 (1997) https://doi.org/10.1016/S0927-7757(96)03949-0
Multi-method determination of the fractal dimension of hematite aggregates
Jingwu Zhang and Jacques Buffle Colloids and Surfaces A: Physicochemical and Engineering Aspects 107 175 (1996) https://doi.org/10.1016/0927-7757(95)03344-0
The generation of fractal structures in gaseous phase
E.F. Mikhailov and S.S. Vlasenko Uspekhi Fizicheskih Nauk 165 (3) 263 (1995) https://doi.org/10.3367/UFNr.0165.199503b.0263
Cluster-Cluster Aggregation of Calcium Carbonate Colloid Particles at the Air/Water Interface
Tomoo Nakayama, Akio Nakahara and Mitsugu Matsushita Journal of the Physical Society of Japan 64 (4) 1114 (1995) https://doi.org/10.1143/JPSJ.64.1114
Fractal Dimension Analysis of Single, In-Situ, Restructured Carbonaceous Aggregates
S. Nyeki and I. Colbeck Aerosol Science and Technology 23 (2) 109 (1995) https://doi.org/10.1080/02786829508965298
Nucleation and growth of Ta-oxide in a non-stationary thermal field—IV. Self-organized structures controlled by aggregation
S Lugomer Vacuum 45 (8) 871 (1994) https://doi.org/10.1016/0042-207X(94)90126-0
A Random Walk Through Fractal Dimensions
A Random Walk Through Fractal Dimensions 171 (1994) https://doi.org/10.1002/9783527615995.ch05
Measurement of the fractal dimensions of smoke aggregates
I Colbeck and Zhangfa Wu Journal of Physics D: Applied Physics 27 (3) 670 (1994) https://doi.org/10.1088/0022-3727/27/3/037
A cluster-cluster aggregation model with tunable fractal dimension
R Thouy and R Jullien Journal of Physics A: Mathematical and General 27 (9) 2953 (1994) https://doi.org/10.1088/0305-4470/27/9/012
Determination of the fractal dimension of aerosols from kinetic coagulation
Zhangfa Wu, I Colbeck and S Simons Journal of Physics D: Applied Physics 27 (11) 2291 (1994) https://doi.org/10.1088/0022-3727/27/11/007
Cluster-cluster aggregation and calculated SAXS patterns: application to concentration dependence of fractal parameters
H F van Garderen, E Pantos, W H Dokter, T P M Beelen and R A van Santen Modelling and Simulation in Materials Science and Engineering 2 (3) 295 (1994) https://doi.org/10.1088/0965-0393/2/3/001
Nucleation and growth of Ta-oxide in a non-stationary thermal field—V. Summary: adaptive self-organization vs destruction
S Lugomer Vacuum 45 (8) 879 (1994) https://doi.org/10.1016/0042-207X(94)90127-9
Application of experimental and numerical models to the physics of multiparticle systems
Paul Meakin and Arne T. Skjeltorp Advances in Physics 42 (1) 1 (1993) https://doi.org/10.1080/00018739300101464
On the structure formation of hydrophobed particles in the boundary layer of water and octane phases
Z. H�rv�lgyi, G. Medveczky and M. Zrinyi Colloid & Polymer Science 271 (4) 396 (1993) https://doi.org/10.1007/BF00657421
Experimental study of colloidal aggregation in two dimensions. I. Structural aspects
D. J. Robinson and J. C. Earnshaw Physical Review A 46 (4) 2045 (1992) https://doi.org/10.1103/PhysRevA.46.2045
Nonscaling and source-induced scaling behaviour in aggregation model of movable monomers and immovable clusters
N V Brilliantov and P L Krapivsky Journal of Physics A: Mathematical and General 24 (20) 4789 (1991) https://doi.org/10.1088/0305-4470/24/20/014
Laser induced fractal crystallites in amorphous Te–Se–Br films
T. Carrière, C. Ortiz and G. Fuchs Journal of Materials Research 6 (8) 1680 (1991) https://doi.org/10.1557/JMR.1991.1680
Experimental study of the aggregate structures formed in the boundary layer of water—air phases
Zoltán Hórvölgyi, Gabriella Medveczky and Miklós Zrinyi Colloids and Surfaces 60 79 (1991) https://doi.org/10.1016/0166-6622(91)80270-X
Aggregation of colloidal particles with a finite interparticle attraction energy
Wan Y. Shih, Jun Liu, Wei-Heng Shih and Ilhan A. Aksay Journal of Statistical Physics 62 (5-6) 961 (1991) https://doi.org/10.1007/BF01128171
Fractal‐like aggregation of Au islands induced by laser irradiation
T. Carrière, C. Ortiz and G. Fuchs Journal of Applied Physics 70 (9) 5063 (1991) https://doi.org/10.1063/1.349013
Optical Properties of Cometary Dust
David J. Lien International Astronomical Union Colloquium 116 (2) 1003 (1991) https://doi.org/10.1017/S025292110001280X
Fractal aggregates of particles
R. Botet and R. Jullien Phase Transitions 24-26 (2) 691 (1990) https://doi.org/10.1080/01411599008210249
The effects of attractive and repulsive interactions on three-dimensional reaction-limited aggregation
Paul Meakin Journal of Colloid and Interface Science 134 (1) 235 (1990) https://doi.org/10.1016/0021-9797(90)90271-O
Fractal colloidal aggregates with finite interparticle interactions: Energy dependence of the fractal dimension
Jun Liu, Wan Y. Shih, Mehmet Sarikaya and Ilhan A. Aksay Physical Review A 41 (6) 3206 (1990) https://doi.org/10.1103/PhysRevA.41.3206
Scientific Methods for the Study of Polymer Colloids and Their Applications
A. Berge, T. Ellingsen, A. T. Skjeltorp and J. Ugelstad Scientific Methods for the Study of Polymer Colloids and Their Applications 435 (1990) https://doi.org/10.1007/978-94-009-1950-1_20
Adhesive hard-sphere colloidal dispersions: Fractal structures and fractal growth in silica dispersions
P. W. Rouw and C. G. de Kruif Physical Review A 39 (10) 5399 (1989) https://doi.org/10.1103/PhysRevA.39.5399
Simple models for the restructuring of three-dimensional ballistic aggregates
Remi Jullien and Paul Meakin Journal of Colloid and Interface Science 127 (1) 265 (1989) https://doi.org/10.1016/0021-9797(89)90027-1
Projection effects in electron micrographs of three-dimensional fractal aggregates: theory and application to gas-evaporated specimens
T Farestam and G A Niklasson Journal of Physics: Condensed Matter 1 (14) 2451 (1989) https://doi.org/10.1088/0953-8984/1/14/001
The coagulation and deposition of a dry nuclear aerosol formed from clusters possessing a fractal structure
S. Simons and D.R. Simpson Annals of Nuclear Energy 16 (7) 353 (1989) https://doi.org/10.1016/0306-4549(89)90024-8
Fractons observed
Eric Courtens, René Vacher and Erich Stoll Physica D: Nonlinear Phenomena 38 (1-3) 41 (1989) https://doi.org/10.1016/0167-2789(89)90172-3
Aggregation kinetics of macroscopic particles
Jean-François Roussel, Robert Blanc and Christian Camoin Journal de Physique 50 (21) 3269 (1989) https://doi.org/10.1051/jphys:0198900500210326900
The effects of restructuring on the geometry of clusters formed by diffusion-limited, ballistic, and reaction-limited cluster–cluster aggregation
Paul Meakin and Remi Jullien The Journal of Chemical Physics 89 (1) 246 (1988) https://doi.org/10.1063/1.455517
A theory of aggregating systems of particles : the clustering of clusters process
R. Botet and R. Jullien Annales de Physique 13 (3) 153 (1988) https://doi.org/10.1051/anphys:01988001303015300
Random Fluctuations and Pattern Growth: Experiments and Models
Paul Meakin Random Fluctuations and Pattern Growth: Experiments and Models 174 (1988) https://doi.org/10.1007/978-94-009-2653-0_30
Fractal dimension of gas-evaporated Co aggregates: Role of magnetic coupling
G. A. Niklasson, A. Torebring, C. Larsson, C. G. Granqvist and T. Farestam Physical Review Letters 60 (17) 1735 (1988) https://doi.org/10.1103/PhysRevLett.60.1735
Universalities in Condensed Matter
C. Allain and M. Cloitre Springer Proceedings in Physics, Universalities in Condensed Matter 32 146 (1988) https://doi.org/10.1007/978-3-642-51005-2_28
Random Fluctuations and Pattern Growth: Experiments and Models
A. T. Skjeltorp and G. Helgesen Random Fluctuations and Pattern Growth: Experiments and Models 56 (1988) https://doi.org/10.1007/978-94-009-2653-0_9
Characterization of Porous Solids, Proceedings of the IUPAC Symposium (COPS I), Bad Soden a. Ts.
Françoise Ehrburger and Rémi Jullien Studies in Surface Science and Catalysis, Characterization of Porous Solids, Proceedings of the IUPAC Symposium (COPS I), Bad Soden a. Ts. 39 441 (1988) https://doi.org/10.1016/S0167-2991(09)60767-9
Visualization and characterization of colloidal growth from ramified to faceted structures
A. T. Skjeltorp Physical Review Letters 58 (14) 1444 (1987) https://doi.org/10.1103/PhysRevLett.58.1444
Fractal aggregates
Paul Meakin Advances in Colloid and Interface Science 28 249 (1987) https://doi.org/10.1016/0001-8686(87)80016-7
Time-Dependent Effects in Disordered Materials
Arne T. Skjeltorp Time-Dependent Effects in Disordered Materials 1 (1987) https://doi.org/10.1007/978-1-4684-7476-3_1
Restructuring effects in the rain model for random deposition
P. Meakin and R. Jullien Journal de Physique 48 (10) 1651 (1987) https://doi.org/10.1051/jphys:0198700480100165100
Aggregation phenomena and fractal aggregates
R. Jullien Contemporary Physics 28 (5) 477 (1987) https://doi.org/10.1080/00107518708213736
Mesure des Forces D'Attraction Entre Sphères Partiellement Immergées: Influence des Interfaces
C Camoin, J. F Roussell, R Faure and R Blanc Europhysics Letters (EPL) 3 (4) 449 (1987) https://doi.org/10.1209/0295-5075/3/4/011
Fractals in Physics
R. BOTET, R. JULLIEN and M. KOLB Fractals in Physics 255 (1986) https://doi.org/10.1016/B978-0-444-86995-1.50049-4
Large computers key to aggregation phenomena
R. BOTET and R. JULLIEN Nature 319 (6053) 454 (1986) https://doi.org/10.1038/319454a0
Reversible diffusion-limited cluster aggregation
M Kolb Journal of Physics A: Mathematical and General 19 (5) L263 (1986) https://doi.org/10.1088/0305-4470/19/5/009
Long-time crossover phenomena in coagulation kinetics
K. Kang, S. Redner, P. Meakin and F. Leyvraz Physical Review A 33 (2) 1171 (1986) https://doi.org/10.1103/PhysRevA.33.1171
Fractals in Physics
M. KOLB Fractals in Physics 263 (1986) https://doi.org/10.1016/B978-0-444-86995-1.50051-2
Dimensionalities for the harmonic and ballistic measures of fractal aggregates
Paul Meakin Physical Review A 33 (2) 1365 (1986) https://doi.org/10.1103/PhysRevA.33.1365
Geometrical cluster growth models and kinetic gelation
H.J. Herrmann Physics Reports 136 (3) 153 (1986) https://doi.org/10.1016/0370-1573(86)90047-5
Les phénomènes d’agrégation et les agrégats fractals
Rémi Jullien Annales Des Télécommunications 41 (7-8) 343 (1986) https://doi.org/10.1007/BF02997881
Diffusion-Limited Aggregation with Disaggregation
R. Botet and R. Jullien Physical Review Letters 55 (19) 1943 (1985) https://doi.org/10.1103/PhysRevLett.55.1943