Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Hydronium Ions Stabilized in a Titanate-Layered Structure with High Ionic Conductivity: Application to Aqueous Proton Batteries

Seongkoo Kang, Arvinder Singh, Kyle G. Reeves, et al.
Chemistry of Materials 32 (21) 9458 (2020)
https://doi.org/10.1021/acs.chemmater.0c03658

Humidity impedimetric sensor based on vanadium pentoxide xerogel modified screen−printed graphite electrochemical cell

Maria G. Trachioti and Mamas I. Prodromidis
Talanta 216 121003 (2020)
https://doi.org/10.1016/j.talanta.2020.121003

Mixed mode, ionic-electronic diode using atomic layer deposition of V2O5 and ZnO films

Parag Banerjee, Xinyi Chen, Keith Gregorczyk, Laurent Henn-Lecordier and Gary W. Rubloff
Journal of Materials Chemistry 21 (39) 15391 (2011)
https://doi.org/10.1039/c1jm12595h

An Analytical Model for Probing Ion Dynamics in Clays with Broadband Dielectric Spectroscopy

B. Rotenberg, A. Cadéne, J.-F. Dufrêche, et al.
The Journal of Physical Chemistry B 109 (32) 15548 (2005)
https://doi.org/10.1021/jp051586k

Broadband dielectric spectroscopy study of Li+ion motions in the fast ionic conductor Li3xLa2/3 xTiO3(x= 0.09); comparison with7Li NMR results

O Bohnké, J C Badot and J Emery
Journal of Physics: Condensed Matter 15 (44) 7571 (2003)
https://doi.org/10.1088/0953-8984/15/44/010

7Li NMR Studies of Electrochemically Lithiated V2O5 Xerogels

G. P. Holland, D. A. Buttry and J. L. Yarger
Chemistry of Materials 14 (9) 3875 (2002)
https://doi.org/10.1021/cm020260a

Dielectric and conductivity spectroscopy of Li1$minus$xNi1$plus$xO2 in the range of 10$ndash$1010 Hz: polaron hopping

J C Badot, V Bianchi, N Baffier and N Belhadj-Tahar
Journal of Physics: Condensed Matter 14 (28) 6917 (2002)
https://doi.org/10.1088/0953-8984/14/28/303

Optical and electrical properties of vanadium pentoxide xerogel films: modification in electric field and the role of ion transport

A L Pergament, E L Kazakova and G B Stefanovich
Journal of Physics D: Applied Physics 35 (17) 2187 (2002)
https://doi.org/10.1088/0022-3727/35/17/316

Frequency dependence of conductivity in superionic conducting chalcogenide glasses

B Durand, G Taillades, A Pradel, et al.
Journal of Non-Crystalline Solids 172-174 1306 (1994)
https://doi.org/10.1016/0022-3093(94)90657-2

Complex dielectric permittivity, bulk and surface conductivity of 12-tungstophosphoric acid hexahydrate and its dehydrated forms

N. Tjapkin, M. Davidović, Ph. Colomban and U. Mioč
Solid State Ionics 61 (1-3) 179 (1993)
https://doi.org/10.1016/0167-2738(93)90352-4

Radiowave and microwave frequency dielectric relaxations at the superionic, incommensurate and ferroelectric phase transitions in NH4HSeO4and ND4DSeO4

P Colomban and J C Badot
Journal of Physics: Condensed Matter 4 (25) 5625 (1992)
https://doi.org/10.1088/0953-8984/4/25/016

RF-microwave dielectric relaxations and frequency-dependent conductivity in β-Na0.33V2O5 bronze obtained by the sol-gel process

J.C. Badot and N. Baffier
Journal of Solid State Chemistry 93 (1) 53 (1991)
https://doi.org/10.1016/0022-4596(91)90273-K

Dielectric relaxation study of Na0.33V2O5 sol-gel bronze in a broad frequency range 106–1010 Hz

J.C. Badot, N. Baffier and A. Fourrier-Lamer
Journal of Non-Crystalline Solids 131-133 1227 (1991)
https://doi.org/10.1016/0022-3093(91)90759-Y

Electronic properties of Na0.33V2O5 bronze obtained by the sol-gel process

J.C. Badot, D. Gourier, F. Bourdeau, N. Baffier and A. Tabuteau
Journal of Solid State Chemistry 92 (1) 8 (1991)
https://doi.org/10.1016/0022-4596(91)90237-C

Phase transitions and dielectric relaxations in superionic protonic conductor HUP (H3OUO2PO4.3H2O) in the broad frequency range (10-2-1010 Hz)

J.C. Badot, A. Fourrier-Lamer, N. Baffier and Ph. Colomban
Journal de Physique 48 (8) 1325 (1987)
https://doi.org/10.1051/jphys:019870048080132500