La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
B. Derrida , D. Stauffer
J. Phys. France, 46 10 (1985) 1623-1630
Citations de cet article :
67 articles
Machine Learning of Phases and Structures for Model Systems in Physics
Djenabou Bayo, Burak Çivitcioğlu, Joseph J. Webb, Andreas Honecker and Rudolf A. Römer Journal of the Physical Society of Japan 94 (3) (2025) https://doi.org/10.7566/JPSJ.94.031002
Loss-tolerant architecture for quantum computing with quantum emitters
Matthias C. Löbl, Stefano Paesani and Anders S. Sørensen Quantum 8 1302 (2024) https://doi.org/10.22331/q-2024-03-28-1302
An insight of heart-like systems with percolation
Md Aquib Molla and Sanchari Goswami Physics Letters A 518 129695 (2024) https://doi.org/10.1016/j.physleta.2024.129695
Monte Carlo Simulation of Percolation Phenomena for Direct Current in Large Square Matrices
Pawel Zukowski, Pawel Okal, Konrad Kierczynski, Przemyslaw Rogalski, Vitalii Bondariev and Alexander D. Pogrebnjak Energies 16 (24) 8024 (2023) https://doi.org/10.3390/en16248024
A technique for the estimation of percolation thresholds in lattice systems: Application to a problem of granular flow through an orifice
A.A. Torres, R. Caitano and A.J. Ramirez-Pastor Physica A: Statistical Mechanics and its Applications 625 128992 (2023) https://doi.org/10.1016/j.physa.2023.128992
The percolating cluster is invisible to image recognition with deep learning
Djénabou Bayo, Andreas Honecker and Rudolf A Römer New Journal of Physics 25 (11) 113041 (2023) https://doi.org/10.1088/1367-2630/ad0525
Exact site-percolation probability on the square lattice
Stephan Mertens Journal of Physics A: Mathematical and Theoretical 55 (33) 334002 (2022) https://doi.org/10.1088/1751-8121/ac4195
Working with Dietrich Stauffer in the ’80s and ’90s
Bernard Derrida Physica A: Statistical Mechanics and its Applications 565 125599 (2021) https://doi.org/10.1016/j.physa.2020.125599
Voronoi chains, blocks, and clusters in perturbed square lattices
Emanuel A Lazar and Amir Shoan Journal of Statistical Mechanics: Theory and Experiment 2020 (10) 103204 (2020) https://doi.org/10.1088/1742-5468/abb6e3
Dynamic structure factor of Heisenberg bilayer dimer phases in the presence of quenched disorder and frustration
Max Hörmann and Kai Phillip Schmidt Physical Review B 102 (9) (2020) https://doi.org/10.1103/PhysRevB.102.094427
Results for a critical threshold, the correction-to-scaling exponent and susceptibility amplitude ratio for 2d percolation
Robert M. Ziff Physics Procedia 15 106 (2011) https://doi.org/10.1016/j.phpro.2011.06.009
Correction-to-scaling exponent for two-dimensional percolation
Robert M. Ziff Physical Review E 83 (2) (2011) https://doi.org/10.1103/PhysRevE.83.020107
Statistical mechanics of RNA folding: A lattice approach
P. Leoni and C. Vanderzande Physical Review E 68 (5) (2003) https://doi.org/10.1103/PhysRevE.68.051904
Sequence Randomness and Polymer Collapse Transitions
Pietro Monari, Attilio L. Stella, Carlo Vanderzande and Enzo Orlandini Physical Review Letters 83 (1) 112 (1999) https://doi.org/10.1103/PhysRevLett.83.112
Phase diagram and critical behaviour of homopolymers with steric frustration
Stefano Lise Journal of Physics A: Mathematical and General 31 (29) 6183 (1998) https://doi.org/10.1088/0305-4470/31/29/010
Connectivity-dependent properties of diluted sytems in a transfer-matrix description
S. L. A. de Queiroz and R. B. Stinchcombe Physical Review E 57 (6) R6245 (1998) https://doi.org/10.1103/PhysRevE.57.R6245
Search for a Kosterlitz-Thouless transition in a triangular Ising antiferromagnet with further-neighbor ferromagnetic interactions
S. L. A. de Queiroz and Eytan Domany Physical Review E 52 (5) 4768 (1995) https://doi.org/10.1103/PhysRevE.52.4768
Surface crossover exponent for branched polymers in two dimensions
S L A de Queiroz Journal of Physics A: Mathematical and General 28 (22) 6315 (1995) https://doi.org/10.1088/0305-4470/28/22/008
The fixed-scale transformation approach to fractal growth
A. Erzan, L. Pietronero and A. Vespignani Reviews of Modern Physics 67 (3) 545 (1995) https://doi.org/10.1103/RevModPhys.67.545
Correlation decay and conformal anomaly in the two-dimensional random-bond Ising ferromagnet
S. L. A. de Queiroz Physical Review E 51 (2) 1030 (1995) https://doi.org/10.1103/PhysRevE.51.1030
On the surface properties of two-dimensional percolation clusters
S L A de Queiroz Journal of Physics A: Mathematical and General 28 (13) L363 (1995) https://doi.org/10.1088/0305-4470/28/13/002
Linear polymers with competing interactions: Swollen linear, swollen branched, and compact scaling regimes
R. Dekeyser, E. Orlandini, A. L. Stella and M. C. Tesi Physical Review E 52 (5) 5214 (1995) https://doi.org/10.1103/PhysRevE.52.5214
Fixed-scale transformation approach to linear and branched polymers
M Di Stasio, L Pietronero, A Stella and A Vespignani Journal of Physics A: Mathematical and General 27 (2) 317 (1994) https://doi.org/10.1088/0305-4470/27/2/016
Transfer-matrix scaling from disorder-averaged correlation lengths for diluted Ising systems
S. L. A. de Queiroz and R. B. Stinchcombe Physical Review B 50 (14) 9976 (1994) https://doi.org/10.1103/PhysRevB.50.9976
Vesicle adsorption on a plane: Scaling regimes and crossover phenomena
E. Orlandini, A. L. Stella, M. C. Tesi and F. Sullivan Physical Review E 48 (6) R4203 (1993) https://doi.org/10.1103/PhysRevE.48.R4203
Ring macromolecules in topologically restricted environments
D. Gersappe and M. Olvera de la Cruz Physical Review Letters 70 (4) 461 (1993) https://doi.org/10.1103/PhysRevLett.70.461
Annihilation reactions in two-dimensional percolation clusters: Effects of short-range interactions
M. Hoyuelos and H. O. Mártin Physical Review E 48 (1) 71 (1993) https://doi.org/10.1103/PhysRevE.48.71
Two-stage collapse of a polymer chain in two dimensions
R. Mark Bradley Physical Review E 48 (6) R4195 (1993) https://doi.org/10.1103/PhysRevE.48.R4195
Cellular automata approach to site percolation on ?2. A numerical study
Ph. Blanchard and D. Gandolfo Journal of Statistical Physics 73 (1-2) 399 (1993) https://doi.org/10.1007/BF01052768
Scaling behavior of fluid membranes in three dimensions
David H. Boal and Madan Rao Physical Review A 45 (10) R6947 (1992) https://doi.org/10.1103/PhysRevA.45.R6947
A re-examination of diffusion-limited aggregation with finite lifetime
Jean-M Debierre and R M Bradley Journal of Physics A: Mathematical and General 25 (24) 6551 (1992) https://doi.org/10.1088/0305-4470/25/24/009
Rods to self-avoiding walks to trees in two dimensions
Carlos J. Camacho, Michael E. Fisher and Joseph P. Straley Physical Review A 46 (10) 6300 (1992) https://doi.org/10.1103/PhysRevA.46.6300
Phases of attractive two-dimensional vesicles under pressure
David H. Boal Physical Review A 43 (12) 6771 (1991) https://doi.org/10.1103/PhysRevA.43.6771
The effect of attractive monomer-monomer interactions on adsorption of a polymer chain
A R Veal, J M Yeomans and G Jug Journal of Physics A: Mathematical and General 24 (4) 827 (1991) https://doi.org/10.1088/0305-4470/24/4/016
Cooperative diffusion of animals on the square lattice
J -C Toussaint, J -M Debierre and L Turban Journal of Physics A: Mathematical and General 24 (2) 477 (1991) https://doi.org/10.1088/0305-4470/24/2/020
The statistical mechanics of two-dimensional vesicles
Michael E. Fisher Journal of Mathematical Chemistry 4 (1) 395 (1990) https://doi.org/10.1007/BF01170022
Adsorption of directed polymers
A R Veal, J M Yeomans and G Jug Journal of Physics A: Mathematical and General 23 (3) L109 (1990) https://doi.org/10.1088/0305-4470/23/3/006
Stochastic Processes and their Applications
G. Sobotta Stochastic Processes and their Applications 333 (1990) https://doi.org/10.1007/978-94-009-2117-7_19
Tunable fractal shapes in self-avoiding polygons and planar vesicles
Carlos J. Camacho and Michael E. Fisher Physical Review Letters 65 (1) 9 (1990) https://doi.org/10.1103/PhysRevLett.65.9
Diffusion on two-dimensional percolation clusters with multifractal jump probabilities
H. O. M�rtin and E. V. Albano Zeitschrift f�r Physik B Condensed Matter 80 (1) 147 (1990) https://doi.org/10.1007/BF01390662
Adsorption and Fluctuations of Two-Dimensional Vesicles
A. C Maggs and S Leibler Europhysics Letters (EPL) 12 (1) 19 (1990) https://doi.org/10.1209/0295-5075/12/1/004
Fractal aggregates of particles
R. Botet and R. Jullien Phase Transitions 24-26 (2) 691 (1990) https://doi.org/10.1080/01411599008210249
Theory of branched polymers on fractal lattices
A. K. Roy and A. Blumen The Journal of Chemical Physics 93 (10) 7471 (1990) https://doi.org/10.1063/1.459421
The structure function of branched polymers in a good solvent: A lattice calculation
P. M. Lam The Journal of Chemical Physics 92 (5) 3136 (1990) https://doi.org/10.1063/1.457911
Fractal and nonfractal shapes in two-dimensional vesicles
Michael E. Fisher Physica D: Nonlinear Phenomena 38 (1-3) 112 (1989) https://doi.org/10.1016/0167-2789(89)90180-2
The critical behaviour of clusters with no free ends
Jian Wang and Jin Wang Journal of Physics A: Mathematical and General 22 (21) L1015 (1989) https://doi.org/10.1088/0305-4470/22/21/008
Critical exponents and corrections to scaling for bond trees in two dimensions
T Ishinabe Journal of Physics A: Mathematical and General 22 (20) 4419 (1989) https://doi.org/10.1088/0305-4470/22/20/018
A theory of aggregating systems of particles : the clustering of clusters process
R. Botet and R. Jullien Annales de Physique 13 (3) 153 (1988) https://doi.org/10.1051/anphys:01988001303015300
Resistivity exponent of two-dimensional lattice animals
P. M. Lam and Alex Hansen Journal of Statistical Physics 52 (1-2) 447 (1988) https://doi.org/10.1007/BF01016425
A percolation model with disaggregation and aggregation
H. O. M�rtin and E. V. Albano Zeitschrift f�r Physik B Condensed Matter 70 (2) 213 (1988) https://doi.org/10.1007/BF01318302
Study of recombination reactions of particles adsorbed on fractal and multifractal substrata
E. V. Albano and H. O. Mártin Applied Physics A: Solids and Surface 47 (4) 399 (1988) https://doi.org/10.1007/BF00615505
Series study of random animals in general dimensions
J. Adler, Y. Meir, A. B. Harris, A. Aharony and J. A. M. S. Duarté Physical Review B 38 (7) 4941 (1988) https://doi.org/10.1103/PhysRevB.38.4941
Resistivity and Elasticity Exponents for Lattice Animals
J Wang and A. Brooks Harris Europhysics Letters (EPL) 6 (7) 615 (1988) https://doi.org/10.1209/0295-5075/6/7/008
Percolation cluster shapes in two and three dimensions
J P Straley and M J Stephen Journal of Physics A: Mathematical and General 20 (18) 6501 (1987) https://doi.org/10.1088/0305-4470/20/18/046
Percolation with diffusion of particles with attractive interactions
H O Martin, E V Albano and A L Maltz Journal of Physics A: Mathematical and General 20 (6) 1531 (1987) https://doi.org/10.1088/0305-4470/20/6/035
Applications of the Monte Carlo Method in Statistical Physics
K. Binder and D. Stauffer Topics in Current Physics, Applications of the Monte Carlo Method in Statistical Physics 36 241 (1987) https://doi.org/10.1007/978-3-642-51703-7_8
Conformal invariance for polymers and percolation
H Saleur Journal of Physics A: Mathematical and General 20 (2) 455 (1987) https://doi.org/10.1088/0305-4470/20/2/031
Branched polymers with prescribed number of cycles: Monte Carlo and exact series studies
P. M. Lam Physical Review A 35 (1) 349 (1987) https://doi.org/10.1103/PhysRevA.35.349
Percolation of interacting particles deposited onto a planar substrate
Ezequiel V. Albano and Héctor O. Mártin Thin Solid Films 151 (1) 121 (1987) https://doi.org/10.1016/0040-6090(87)90014-9
Large-Scale Properties and Collapse Transition of Branched Polymers: Exact Results on Fractal Lattices
M. Kneževic and J. Vannimenus Physical Review Letters 56 (15) 1591 (1986) https://doi.org/10.1103/PhysRevLett.56.1591
Geometrical cluster growth models and kinetic gelation
H.J. Herrmann Physics Reports 136 (3) 153 (1986) https://doi.org/10.1016/0370-1573(86)90047-5
Monte Carlo study of lattice animals inddimensions
P. M. Lam Physical Review A 34 (3) 2339 (1986) https://doi.org/10.1103/PhysRevA.34.2339
A Monte Carlo method for series expansions
D Dhar and P M Lam Journal of Physics A: Mathematical and General 19 (17) L1057 (1986) https://doi.org/10.1088/0305-4470/19/17/002
The efficient determination of the percolation threshold by a frontier-generating walk in a gradient
R M Ziff and B Sapoval Journal of Physics A: Mathematical and General 19 (18) L1169 (1986) https://doi.org/10.1088/0305-4470/19/18/010
Transfer matrix calculation of the exponent ? for two-dimensional self-avoiding walks
H. Saleur and B. Derrida Journal of Statistical Physics 44 (1-2) 225 (1986) https://doi.org/10.1007/BF01010914
Spin glasses with p-spin interactions
E. Gardner Nuclear Physics B 257 747 (1985) https://doi.org/10.1016/0550-3213(85)90374-8
Phenomenological renormalisation of Monte Carlo data for percolation
M Sahimi Journal of Physics A: Mathematical and General 18 (18) 3597 (1985) https://doi.org/10.1088/0305-4470/18/18/022