La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
E. Gardner
J. Phys. France, 45 11 (1984) 1755-1763
Citations de cet article :
40 articles
Real-space renormalization for disordered systems at the level of large deviations
Cécile Monthus Journal of Statistical Mechanics: Theory and Experiment 2020 (1) 013301 (2020) https://doi.org/10.1088/1742-5468/ab5d09
Sojourns in Probability Theory and Statistical Physics - I
Jeffrey Gertler and Jonathan Machta Springer Proceedings in Mathematics & Statistics, Sojourns in Probability Theory and Statistical Physics - I 298 171 (2019) https://doi.org/10.1007/978-981-15-0294-1_7
Ising spin glasses in dimension five
P. H. Lundow and I. A. Campbell Physical Review E 95 (1) (2017) https://doi.org/10.1103/PhysRevE.95.012112
Real Space Migdal–Kadanoff Renormalisation of Glassy Systems: Recent Results and a Critical Assessment
Maria Chiara Angelini and Giulio Biroli Journal of Statistical Physics 167 (3-4) 476 (2017) https://doi.org/10.1007/s10955-017-1748-4
The Ising Spin Glass in dimension four
P.H. Lundow and I.A. Campbell Physica A: Statistical Mechanics and its Applications (2015) https://doi.org/10.1016/j.physa.2015.04.009
Spin Glass in a Field: A New Zero-Temperature Fixed Point in Finite Dimensions
Maria Chiara Angelini and Giulio Biroli Physical Review Letters 114 (9) (2015) https://doi.org/10.1103/PhysRevLett.114.095701
FRACTAL DIMENSION OF SPIN-GLASSES INTERFACES IN DIMENSION d = 2 AND d = 3 VIA STRONG DISORDER RENORMALIZATION AT ZERO TEMPERATURE
CÉCILE MONTHUS Fractals 23 (04) 1550042 (2015) https://doi.org/10.1142/S0218348X15500425
Fixed-point distributions of short-range Ising spin glasses on hierarchical lattices
Sebastião T. O. Almeida and Fernando D. Nobre Physical Review E 91 (3) (2015) https://doi.org/10.1103/PhysRevE.91.032138
Evidence for nonuniversal scaling in dimension-four Ising spin glasses
P. H. Lundow and I. A. Campbell Physical Review E 91 (4) (2015) https://doi.org/10.1103/PhysRevE.91.042121
One-dimensional Ising spin-glass with power-law interaction: real-space renormalization at zero temperature
Cécile Monthus Journal of Statistical Mechanics: Theory and Experiment 2014 (6) P06015 (2014) https://doi.org/10.1088/1742-5468/2014/14/P06015
Zero-temperature spin-glass–ferromagnetic transition: Scaling analysis of the domain-wall energy
Cécile Monthus and Thomas Garel Physical Review B 89 (18) (2014) https://doi.org/10.1103/PhysRevB.89.184408
Dynamical barriers of pure and random ferromagnetic Ising models on fractal lattices
Cécile Monthus and Thomas Garel Journal of Statistical Mechanics: Theory and Experiment 2013 (06) P06007 (2013) https://doi.org/10.1088/1742-5468/2013/06/P06007
Typical versus averaged overlap distribution in spin glasses: Evidence for droplet scaling theory
Cécile Monthus and Thomas Garel Physical Review B 88 (13) (2013) https://doi.org/10.1103/PhysRevB.88.134204
Ultrametric probe of the spin-glass state in a field
Helmut G. Katzgraber, Thomas Jörg, Florent Krząkała and Alexander K. Hartmann Physical Review B 86 (18) (2012) https://doi.org/10.1103/PhysRevB.86.184405
Strong disorder RG principles within a fixed-cell-size real space renormalization: application to the random transverse field Ising model on various fractal lattices
Cécile Monthus and Thomas Garel Journal of Statistical Mechanics: Theory and Experiment 2012 (05) P05002 (2012) https://doi.org/10.1088/1742-5468/2012/05/P05002
Zero-temperature complex replica zeros of the ±J Ising spin glass on mean-field systems and beyond
Tomoyuki Obuchi, Yoshiyuki Kabashima, Hidetoshi Nishimori and Masayuki Ohzeki Physica E: Low-dimensional Systems and Nanostructures 43 (3) 786 (2011) https://doi.org/10.1016/j.physe.2010.07.052
Real-space Renormalization Group analysis of a non-mean-field spin-glass
M. Castellana EPL (Europhysics Letters) 95 (4) 47014 (2011) https://doi.org/10.1209/0295-5075/95/47014
Renormalization-group computation of the critical exponents of hierarchical spin glasses: Large-scale behavior and divergence of the correlation length
Michele Castellana and Giorgio Parisi Physical Review E 83 (4) (2011) https://doi.org/10.1103/PhysRevE.83.041134
Nature of the spin-glass phase at experimental length scales
R Alvarez Baños, A Cruz, L A Fernandez, et al. Journal of Statistical Mechanics: Theory and Experiment 2010 (06) P06026 (2010) https://doi.org/10.1088/1742-5468/2010/06/P06026
Hierarchical Random Energy Model of a Spin Glass
Michele Castellana, Aurélien Decelle, Silvio Franz, Marc Mézard and Giorgio Parisi Physical Review Letters 104 (12) (2010) https://doi.org/10.1103/PhysRevLett.104.127206
Disordered Potts model on the diamond hierarchical lattice: Numerically exact treatment in the large-qlimit
Ferenc Iglói and Loïc Turban Physical Review B 80 (13) (2009) https://doi.org/10.1103/PhysRevB.80.134201
Critical points of quadratic renormalizations of random variables and phase transitions of disordered polymer models on diamond lattices
Cécile Monthus and Thomas Garel Physical Review E 77 (2) (2008) https://doi.org/10.1103/PhysRevE.77.021132
Critical behavior of interfaces in disordered Potts ferromagnets: Statistics of free-energy, energy, and interfacial adsorption
Cécile Monthus and Thomas Garel Physical Review B 77 (13) (2008) https://doi.org/10.1103/PhysRevB.77.134416
Equilibrium of disordered systems: constructing the appropriate valleys in each sample via strong-disorder renormalization in configuration space
Cécile Monthus and Thomas Garel Journal of Physics A: Mathematical and Theoretical 41 (37) 375005 (2008) https://doi.org/10.1088/1751-8113/41/37/375005
Evidence for Universal Scaling in the Spin-Glass Phase
Thomas Jörg and Helmut G. Katzgraber Physical Review Letters 101 (19) (2008) https://doi.org/10.1103/PhysRevLett.101.197205
Disorder-dominated phases of random systems: relations between the tail exponents and scaling exponents
Cécile Monthus and Thomas Garel Journal of Statistical Mechanics: Theory and Experiment 2008 (01) P01008 (2008) https://doi.org/10.1088/1742-5468/2008/01/P01008
Critical behavior of a class of noncommutative aperiodic models on hierarchical lattices
S.R. Salinas and W.F. Wreszinski Physica A: Statistical Mechanics and its Applications 297 (3-4) 434 (2001) https://doi.org/10.1016/S0378-4371(01)00237-0
Influence of critical behavior on the spin-glass phase
Hemant Bokil, Barbara Drossel and M. A. Moore Physical Review B 62 (2) 946 (2000) https://doi.org/10.1103/PhysRevB.62.946
Comment on “Evidence for the Droplet Picture of Spin Glasses”
E. Marinari, G. Parisi, J. J. Ruiz-Lorenzo and F. Zuliani Physical Review Letters 82 (25) 5176 (1999) https://doi.org/10.1103/PhysRevLett.82.5176
Marinariet al.Reply:
E. Marinari, C. Naitza, F. Zuliani, et al. Physical Review Letters 82 (25) 5175 (1999) https://doi.org/10.1103/PhysRevLett.82.5175
Evidence for the Droplet Picture of Spin Glasses
M. A. Moore, Hemant Bokil and Barbara Drossel Physical Review Letters 81 (19) 4252 (1998) https://doi.org/10.1103/PhysRevLett.81.4252
Short-range Ising spin glasses: a critical exponent study
E. Nogueira Jr, S. Coutinho, F.D. Nobre and E.M.F. Curado Physica A: Statistical Mechanics and its Applications 257 (1-4) 365 (1998) https://doi.org/10.1016/S0378-4371(98)00160-5
The spin-glass model on hierarchical lattices
F Koukiou Journal of Physics A: Mathematical and General 28 (10) 2737 (1995) https://doi.org/10.1088/0305-4470/28/10/007
Dynamics of a hierarchical spin glass
R Riera and J A Hertz Journal of Physics A: Mathematical and General 24 (11) 2625 (1991) https://doi.org/10.1088/0305-4470/24/11/028
Directed Polymers on Disordered Hierarchical Lattices
B Derrida and R. B Griffiths Europhysics Letters (EPL) 8 (2) 111 (1989) https://doi.org/10.1209/0295-5075/8/2/001
Spin-glass in low dimensions and the Migdal-Kadanoff approximation
E.M.F. Curado and J.-L. Meunier Physica A: Statistical Mechanics and its Applications 149 (1-2) 164 (1988) https://doi.org/10.1016/0378-4371(88)90212-9
Localization in one dimensional correlated random potentials
R. Johnston and B. Kramer Zeitschrift f�r Physik B Condensed Matter 63 (3) 273 (1986) https://doi.org/10.1007/BF01303806
A mixed phase transition for a hierarchical spin glass
S. Oliffson Kamphorst Journal of Statistical Physics 45 (3-4) 369 (1986) https://doi.org/10.1007/BF01021077
On the Harris criterion for hierarchical lattices
B Derrida, H Dickinson and J Yeomans Journal of Physics A: Mathematical and General 18 (1) L53 (1985) https://doi.org/10.1088/0305-4470/18/1/010
The nature of the spin-glass phase and finite size effects
M A Moore and A J Bray Journal of Physics C: Solid State Physics 18 (23) L699 (1985) https://doi.org/10.1088/0022-3719/18/23/004