Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Effect of temperature on the dipole response, structural and dynamical properties of water under external electric fields

Mary T. Ajide and Niall J. English
Journal of Molecular Liquids 389 122675 (2023)
https://doi.org/10.1016/j.molliq.2023.122675

Density Functional Study on the Deprotonation and Binding Mechanism of Imidazole on Gold Electrodes in an Aqueous Environment

Yuxuan Jiang, Yongfeng Wang, Stefano Sanvito and Shimin Hou
The Journal of Physical Chemistry C 126 (30) 12424 (2022)
https://doi.org/10.1021/acs.jpcc.2c01476

Dynamical Anomaly of Aqueous Amphiphilic Solutions: Connection to Solution H-Bond Fluctuation Dynamics?

Atanu Baksi and Ranjit Biswas
ACS Omega 7 (13) 10970 (2022)
https://doi.org/10.1021/acsomega.1c06831

Ion and water transport reasonably involves rotation and pseudorotation: measurement and modeling the temperature dependence of small-angle neutron scattering from aqueous SrI2

Kenneth A. Rubinson and Raymond D. Mountain
Physical Chemistry Chemical Physics 22 (24) 13479 (2020)
https://doi.org/10.1039/D0CP02088E

Deprotonation of Guanine Radical Cation G•+ Mediated by the Protonated Water Cluster

Xianwang Zhang, Jialong Jie, Di Song and Hongmei Su
The Journal of Physical Chemistry A 124 (29) 6076 (2020)
https://doi.org/10.1021/acs.jpca.0c03748

Formation of antibiotic cycloserine complexes with stearic acid and its calcium and magnesium salts: from quantum mechanical modeling to studies of membranotropic action

Functional Materials 26 (3) (2019)
https://doi.org/10.15407/fm26.04.673

Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures

T. R. Prisk, C. Hoffmann, A. I. Kolesnikov, et al.
Physical Review Letters 120 (19) (2018)
https://doi.org/10.1103/PhysRevLett.120.196001

High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials

Andrea Gabrieli, Marco Sant, Saeed Izadi, et al.
Frontiers of Physics 13 (1) (2018)
https://doi.org/10.1007/s11467-017-0693-7

Experimental Research on Vibration Fatigue of CFRP and Its Influence Factors Based on Vibration Testing

Zhengwei Fan, Yu Jiang, Shufeng Zhang and Xun Chen
Shock and Vibration 2017 1 (2017)
https://doi.org/10.1155/2017/1241623

Water response to ganglioside GM1 surface remodelling

P. Brocca, V. Rondelli, F. Mallamace, et al.
Biochimica et Biophysica Acta (BBA) - General Subjects 1861 (1) 3573 (2017)
https://doi.org/10.1016/j.bbagen.2016.04.029

Hydrogen bond lifetimes in supercritical methanol–water mixtures via MD simulation

Takumi Ono, Masaki Ota, Yoshiyuki Sato and Hiroshi Inomata
Molecular Physics 114 (20) 2974 (2016)
https://doi.org/10.1080/00268976.2016.1213435

Compressibility and Dielectric Relaxation of Mixtures of Water with Monohydroxy Alcohols

Marzena Dzida and Udo Kaatze
The Journal of Physical Chemistry B 119 (38) 12480 (2015)
https://doi.org/10.1021/acs.jpcb.5b07093

Structure and dynamics of monohydroxy alcohols—Milestones towards their microscopic understanding, 100 years after Debye

Roland Böhmer, Catalin Gainaru and Ranko Richert
Physics Reports 545 (4) 125 (2014)
https://doi.org/10.1016/j.physrep.2014.07.005

On the Effects of Temperature, Pressure, and Dissolved Salts on the Hydrogen-Bond Network of Water

N. Galamba
The Journal of Physical Chemistry B 117 (2) 589 (2013)
https://doi.org/10.1021/jp309312q

Insights into the dynamics of evaporation and proton migration in protonated water clusters from Large‐scale Born–Oppenheimer direct dynamics

Vladimir V. Rybkin, Anton O. Simakov, Vebjørn Bakken, et al.
Journal of Computational Chemistry 34 (7) 533 (2013)
https://doi.org/10.1002/jcc.23162

Hydrogen bond lifetime for water in classic and quantum molecular dynamics

M. L. Antipova and V. E. Petrenko
Russian Journal of Physical Chemistry A 87 (7) 1170 (2013)
https://doi.org/10.1134/S0036024413070030

Computer simulation of the hydrogen bond lifetime and the mechanism of the structural rearrangement of water

V. E. Petrenko, M. L. Antipova and D. L. Gurina
Russian Journal of Physical Chemistry A 87 (1) 49 (2013)
https://doi.org/10.1134/S0036024413010160

Insights on Hydrogen-Bond Lifetimes in Liquid and Supercooled Water

H. F. M. C. Martiniano and N. Galamba
The Journal of Physical Chemistry B 117 (50) 16188 (2013)
https://doi.org/10.1021/jp407768u

From Single Hydrogen Bonds to Extended Hydrogen‐Bond Wires: Low‐Dimensional Model Systems for Vibrational Spectroscopy of Associated Liquids

Martin Olschewski, Stephan Knop, Jörg Lindner and Peter Vöhringer
Angewandte Chemie International Edition 52 (37) 9634 (2013)
https://doi.org/10.1002/anie.201210009

Von einzelnen H‐Brücken zu ausgedehnten H‐verbrückten Drähten: niederdimensionale Modellsysteme für die Schwingungsspektroskopie vernetzter Flüssigkeiten

Martin Olschewski, Stephan Knop, Jörg Lindner and Peter Vöhringer
Angewandte Chemie 125 (37) 9814 (2013)
https://doi.org/10.1002/ange.201210009

Theoretical and experimental study of hydrogen bonded liquids with water as an example

Narayan Prasad Adhikari, Harihar Paudyal, Akhilesh Tiwari and Manoj Johri
Journal of Molecular Liquids 158 (2) 80 (2011)
https://doi.org/10.1016/j.molliq.2010.10.012

New model pair potential for water. Effect of inclusion of specific O⋯H interactions on the topology and dynamics of the hydrogen-bond network

V. E. Petrenko, M. L. Antipova, A. V. Borovkov and O. V. Ved’
Russian Journal of General Chemistry 77 (10) 1700 (2007)
https://doi.org/10.1134/S1070363207100076

Relation between macroscopic and microscopic dielectric relaxation times in water dynamics

Vladimir I. Arkhipov, Noam Agmon and Vladimir I. Arkhipov
Israel Journal of Chemistry 43 (3-4) 363 (2003)
https://doi.org/10.1560/5WKJ-WJ9F-Q0DR-WPFH

The symmetric broadening of the water relaxation peak in polymer–water mixtures and its relationship to the hydrophilic and hydrophobic properties of polymers

Yaroslav E. Ryabov, Yuri Feldman, Naoki Shinyashiki and Shin Yagihara
The Journal of Chemical Physics 116 (19) 8610 (2002)
https://doi.org/10.1063/1.1471551

Ultrafast Raman-induced Kerr-effect of water: Single molecule versus collective motions

Kathrin Winkler, Jörg Lindner, Helge Bürsing and Peter Vöhringer
The Journal of Chemical Physics 113 (11) 4674 (2000)
https://doi.org/10.1063/1.1288690

Hydrogen-bond dynamics for the extended simple point-charge model of water

Francis W. Starr, Johannes K. Nielsen and H. Eugene Stanley
Physical Review E 62 (1) 579 (2000)
https://doi.org/10.1103/PhysRevE.62.579

Relaxational dynamics in the glassy, supercooled liquid, and orientationally disordered crystal phases of a polymorphic molecular material

M. Jiménez-Ruiz, M. A. González, F. J. Bermejo, et al.
Physical Review B 59 (14) 9155 (1999)
https://doi.org/10.1103/PhysRevB.59.9155

Viscoelastic behavior of water in the terahertz-frequency range: An inelastic x-ray scattering study

G. Monaco, A. Cunsolo, G. Ruocco and F. Sette
Physical Review E 60 (5) 5505 (1999)
https://doi.org/10.1103/PhysRevE.60.5505

The bifurcation rearrangement in cyclic water clusters: Breaking and making hydrogen bonds

M. G. Brown, F. N. Keutsch and R. J. Saykally
The Journal of Chemical Physics 109 (22) 9645 (1998)
https://doi.org/10.1063/1.477630

The dielectric properties of water in its different states of interaction

Udo Kaatze
Journal of Solution Chemistry 26 (11) 1049 (1997)
https://doi.org/10.1007/BF02768829

Relaxation Dynamics of Water and HCl Aqueous Solutions Measured by Time-Resolved Optical Kerr Effect

Paolo Foggi, Marco Bellini, Dany P. Kien, Isabelle Vercuque and Roberto Righini
The Journal of Physical Chemistry A 101 (38) 7029 (1997)
https://doi.org/10.1021/jp962760v

Dynamics of water confined in non-ionic amphiphiles supramolecular structures

Francesco Mallamace, John C. Earnshaw, Norberto Micali, Sebastiano Trusso and Cirino Vasi
Physica A: Statistical Mechanics and its Applications 231 (1-3) 207 (1996)
https://doi.org/10.1016/0378-4371(95)00461-0

Growth and collapse of structural patterns in the hydrogen bond network in liquid water

Eli Shiratani and Masaki Sasai
The Journal of Chemical Physics 104 (19) 7671 (1996)
https://doi.org/10.1063/1.471475

Tetrahedral Displacement:  The Molecular Mechanism behind the Debye Relaxation in Water

Noam Agmon
The Journal of Physical Chemistry 100 (3) 1072 (1996)
https://doi.org/10.1021/jp9516295

The influence of solvent dynamics on the lifetime of solute–solvent hydrogen bonds

Andrea J. Benigno, Ednan Ahmed and Mark Berg
The Journal of Chemical Physics 104 (19) 7382 (1996)
https://doi.org/10.1063/1.471454

Light-scattering study of phase transitions in aqueous solutions of nonionic amphiphiles

Zh. S. Nickolov, J. C. Earnshaw, F. Mallamace, N. Micali and C. Vasi
Physical Review E 52 (5) 5241 (1995)
https://doi.org/10.1103/PhysRevE.52.5241

Translational and orientational dynamics of a water cluster (H2O)108 and liquid water: Analysis of neutron scattering and depolarized light scattering

Shinji Saito and Iwao Ohmine
The Journal of Chemical Physics 102 (9) 3566 (1995)
https://doi.org/10.1063/1.468580

Salt effect on transient proton transfer to solvent and microscopic proton mobility

Noam Agmon, Sinay Y. Goldberg and Dan Huppert
Journal of Molecular Liquids 64 (1-2) 161 (1995)
https://doi.org/10.1016/0167-7322(95)92828-Y

Structure and hydrogen bond dynamics of water–dimethyl sulfoxide mixtures by computer simulations

Alenka Luzar and David Chandler
The Journal of Chemical Physics 98 (10) 8160 (1993)
https://doi.org/10.1063/1.464521

Statistical mechanics of hydrogen bond networks

Thomas Krausche and Walter Nadler
Zeitschrift f�r Physik B Condensed Matter 86 (3) 433 (1992)
https://doi.org/10.1007/BF01323737

Dielectric relaxation of aqueous electrolyte solutions. I. Solvent relaxation of 1:2, 2:1, and 2:2 electrolyte solutions

J. Barthel, H. Hetzenauer and R. Buchner
Berichte der Bunsengesellschaft für physikalische Chemie 96 (8) 988 (1992)
https://doi.org/10.1002/bbpc.19920960807

Infrared spectra of water. I. Effect of temperature and of H/D isotopic dilution

Y. Maréchal
The Journal of Chemical Physics 95 (8) 5565 (1991)
https://doi.org/10.1063/1.461630

Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols

J. Barthel, K. Bachhuber, R. Buchner and H. Hetzenauer
Chemical Physics Letters 165 (4) 369 (1990)
https://doi.org/10.1016/0009-2614(90)87204-5

Lifetime of the bond network and gel-like anomalies in supercooled water

Francesco Sciortino, Peter H. Poole, H. Eugene Stanley and Shlomo Havlin
Physical Review Letters 64 (14) 1686 (1990)
https://doi.org/10.1103/PhysRevLett.64.1686

High-resolution low-frequency Raman spectra of liquid H2O and D2O

V. Mazzacurati, A. Nucara, M. A. Ricci, G. Ruocco and G. Signorelli
The Journal of Chemical Physics 93 (11) 7767 (1990)
https://doi.org/10.1063/1.459356

Raman spectra of water in the translational and librational regions

M A Ricci, G Signorelli and V Mazzacurati
Journal of Physics: Condensed Matter 2 (S) SA183 (1990)
https://doi.org/10.1088/0953-8984/2/S/026

Dynamical structure of water: Low-frequency Raman scattering from a disordered network and aggregates

J. L. Rousset, E. Duval and A. Boukenter
The Journal of Chemical Physics 92 (4) 2150 (1990)
https://doi.org/10.1063/1.458006

Low frequency polarized and depolarized light scattering in H-bonded liquids: CH3(CH2)n−1OH (n=1,...,5)

P. Benassi, V. Mazzacurati, M. Nardone, G. Ruocco and G. Signorelli
The Journal of Chemical Physics 91 (11) 6752 (1989)
https://doi.org/10.1063/1.457343

Diffusion effects of hydrogen bond fluctuations. I. The long time regime of the translational and rotational diffusion of water

Davide Bertolini, Mario Cassettari, Mauro Ferrario, Paolo Grigolini, Giuseppe Salvetti and Alessandro Tani
The Journal of Chemical Physics 91 (2) 1179 (1989)
https://doi.org/10.1063/1.457191

Low-frequency Raman spectra of liquid water: A molecular dynamics simulation

V. Mazzacurati, M.A. Ricci, G. Ruocco and M. Sampoli
Chemical Physics Letters 159 (4) 383 (1989)
https://doi.org/10.1016/0009-2614(89)87504-9

Theoretical and computer-simulation study of the density fluctuations in liquid water

M. A. Ricci, D. Rocca, G. Ruocco and R. Vallauri
Physical Review A 40 (12) 7226 (1989)
https://doi.org/10.1103/PhysRevA.40.7226

Site percolation and Vogel–Fulcher behavior on picosecond time scales in concentrated electrolytes: Raman spectra of aqueous solutions of LiSCN and KSCN

Walter G. Rothschild and Michel Perrot
The Journal of Chemical Physics 89 (10) 6454 (1988)
https://doi.org/10.1063/1.455414

Experimental determination of the nature of diffusive motions of water molecules at low temperatures

J. Teixeira, M.-C. Bellissent-Funel, S. H. Chen and A. J. Dianoux
Physical Review A 31 (3) 1913 (1985)
https://doi.org/10.1103/PhysRevA.31.1913

Local structure and dynamics in concentrated aqueous solutions and glasses of univalent ions

François Guillaume, Michel Perrot and Walter G. Rothschild
The Journal of Chemical Physics 83 (9) 4338 (1985)
https://doi.org/10.1063/1.449047

Advances in Chemical Physics

D. Bertolini, M. Cassettari, M. Ferrario, P. Grigolini and G. Salvetti
Advances in Chemical Physics, Advances in Chemical Physics 62 277 (1985)
https://doi.org/10.1002/9780470142868.ch7

Near infrared spectra and the disrupted network model of normal and supercooled water

C. A. Angell and V. Rodgers
The Journal of Chemical Physics 80 (12) 6245 (1984)
https://doi.org/10.1063/1.446727

Hydrogen bond statistics and dynamics in water: Self-diffusion and dielectric relaxation

Davide Bertolini, Mario Cassettari, Mauro Ferrario, Giuseppe Salvetti and Paolo Grigolini
The Journal of Chemical Physics 81 (12) 6214 (1984)
https://doi.org/10.1063/1.447577

A “microscopic” model for the dynamics of water

Davide Bertolini, Mario Cassettari, Mauro Ferrario, Giuseppe Salvetti and Paolo Grigolini
Chemical Physics Letters 98 (6) 548 (1983)
https://doi.org/10.1016/0009-2614(83)80239-5