La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
C. Aragão de Carvalho , S. Caracciolo
J. Phys. France, 44 3 (1983) 323-331
Citations de cet article :
75 articles
Thermodynamic and topological properties of copolymer rings with a segregation/mixing transition
E J Janse van Rensburg, E Orlandini, M C Tesi and S G Whittington Journal of Physics A: Mathematical and Theoretical 55 (43) 435002 (2022) https://doi.org/10.1088/1751-8121/ac9936
A Markov Chain Sampler for Plane Curves
Harrison Chapman and Andrew Rechnitzer Experimental Mathematics 31 (2) 552 (2022) https://doi.org/10.1080/10586458.2019.1660739
Asymptotics of multicomponent linked polygons
A Bonato, E Orlandini and S G Whittington Journal of Physics A: Mathematical and Theoretical 54 (23) 235002 (2021) https://doi.org/10.1088/1751-8121/abf872
Linking and link complexity of geometrically constrained pairs of rings
E Orlandini, M C Tesi and S G Whittington Journal of Physics A: Mathematical and Theoretical 54 (50) 505002 (2021) https://doi.org/10.1088/1751-8121/ac385a
Asymptotics of linked polygons
A Bonato, E Orlandini and S G Whittington Journal of Physics A: Mathematical and Theoretical 53 (38) 385002 (2020) https://doi.org/10.1088/1751-8121/aba8cf
A Symmetry Motivated Link Table
Shawn Witte, Michelle Flanner and Mariel Vazquez Symmetry 10 (11) 604 (2018) https://doi.org/10.3390/sym10110604
Statics and dynamics of DNA knotting
Enzo Orlandini Journal of Physics A: Mathematical and Theoretical 51 (5) 053001 (2018) https://doi.org/10.1088/1751-8121/aa9a4c
Statistical topology and knotting of fluctuating filaments
Enzo Orlandini Physica A: Statistical Mechanics and its Applications 504 155 (2018) https://doi.org/10.1016/j.physa.2017.09.106
Bounds for minimum step number of knots confined to tubes in the simple cubic lattice
Kai Ishihara, Maxime Pouokam, Atsumi Suzuki, et al. Journal of Physics A: Mathematical and Theoretical 50 (21) 215601 (2017) https://doi.org/10.1088/1751-8121/aa6a4f
Ultrametricity of optimal transport substates for multiple interacting paths over a square lattice network
Marco Cogoni, Giovanni Busonera and Gianluigi Zanetti Physical Review E 95 (3) (2017) https://doi.org/10.1103/PhysRevE.95.030108
Microcanonical simulations of adsorbing self-avoiding walks
E J Janse van Rensburg Journal of Statistical Mechanics: Theory and Experiment 2016 (3) 033202 (2016) https://doi.org/10.1088/1742-5468/2016/03/033202
Current theoretical models fail to predict the topological complexity of the human genome
Javier Arsuaga, Reyka G. Jayasinghe, Robert G. Scharein, et al. Frontiers in Molecular Biosciences 2 (2015) https://doi.org/10.3389/fmolb.2015.00048
Link lengths and their growth powers
Youngsik Huh, Sungjong No, Seungsang Oh and Eric J Rawdon Journal of Physics A: Mathematical and Theoretical 48 (3) 035202 (2015) https://doi.org/10.1088/1751-8113/48/3/035202
Knotted Globular Ring Polymers: How Topology Affects Statistics and Thermodynamics
Marco Baiesi, Enzo Orlandini and Attilio L. Stella Macromolecules 47 (23) 8466 (2014) https://doi.org/10.1021/ma5020287
Interacting elastic lattice polymers: A study of the free energy of globular rings
M. Baiesi and E. Orlandini Physical Review E 89 (6) (2014) https://doi.org/10.1103/PhysRevE.89.062601
The entropic pressure of lattice knots
E J Janse van Rensburg Journal of Statistical Mechanics: Theory and Experiment 2014 (6) P06017 (2014) https://doi.org/10.1088/1742-5468/2014/06/P06017
The entropic pressure of a lattice polygon
F Gassoumov and E J Janse van Rensburg Journal of Statistical Mechanics: Theory and Experiment 2013 (10) P10005 (2013) https://doi.org/10.1088/1742-5468/2013/10/P10005
New biologically motivated knot table
Reuben Brasher, Rob G. Scharein and Mariel Vazquez Biochemical Society Transactions 41 (2) 606 (2013) https://doi.org/10.1042/BST20120278
Bounds for the minimum step number of knots confined to slabs in the simple cubic lattice
K Ishihara, R Scharein, Y Diao, et al. Journal of Physics A: Mathematical and Theoretical 45 (6) 065003 (2012) https://doi.org/10.1088/1751-8113/45/6/065003
BFACF-style algorithms for polygons in the body-centered and face-centered cubic lattices
E J Janse van Rensburg and A Rechnitzer Journal of Physics A: Mathematical and Theoretical 44 (16) 165001 (2011) https://doi.org/10.1088/1751-8113/44/16/165001
On the mean and variance of the writhe of random polygons
J Portillo, Y Diao, R Scharein, J Arsuaga and M Vazquez Journal of Physics A: Mathematical and Theoretical 44 (27) 275004 (2011) https://doi.org/10.1088/1751-8113/44/27/275004
Knotting probabilities after a local strand passage in unknotted self-avoiding polygons
M L Szafron and C E Soteros Journal of Physics A: Mathematical and Theoretical 44 (24) 245003 (2011) https://doi.org/10.1088/1751-8113/44/24/245003
On the universality of knot probability ratios
E J Janse van Rensburg and A Rechnitzer Journal of Physics A: Mathematical and Theoretical 44 (16) 162002 (2011) https://doi.org/10.1088/1751-8113/44/16/162002
Polymers with spatial or topological constraints: Theoretical and computational results
Cristian Micheletti, Davide Marenduzzo and Enzo Orlandini Physics Reports 504 (1) 1 (2011) https://doi.org/10.1016/j.physrep.2011.03.003
Influence of variable hydrodynamic interaction strength on the transport properties of coiled polymers
Marc L. Mansfield and Jack F. Douglas Physical Review E 81 (2) (2010) https://doi.org/10.1103/PhysRevE.81.021803
Properties of knotted ring polymers. I. Equilibrium dimensions
Marc L. Mansfield and Jack F. Douglas The Journal of Chemical Physics 133 (4) (2010) https://doi.org/10.1063/1.3457160
Bounds for the minimum step number of knots in the simple cubic lattice
R Scharein, K Ishihara, J Arsuaga, et al. Journal of Physics A: Mathematical and Theoretical 42 (47) 475006 (2009) https://doi.org/10.1088/1751-8113/42/47/475006
Statistical topology of closed curves: Some applications in polymer physics
E. Orlandini and S. G. Whittington Reviews of Modern Physics 79 (2) 611 (2007) https://doi.org/10.1103/RevModPhys.79.611
Random state transitions of knots: a first step towards modeling unknotting by type II topoisomerases
Xia Hua, Diana Nguyen, Barath Raghavan, Javier Arsuaga and Mariel Vazquez Topology and its Applications 154 (7) 1381 (2007) https://doi.org/10.1016/j.topol.2006.05.010
Development of knotting during the collapse transition of polymers
Marc L. Mansfield The Journal of Chemical Physics 127 (24) (2007) https://doi.org/10.1063/1.2806929
Dynamic critical behavior of an extended reptation dynamics for self-avoiding walks
Sergio Caracciolo, Mauro Papinutto and Andrea Pelissetto Physical Review E 65 (3) (2002) https://doi.org/10.1103/PhysRevE.65.031106
Monte Carlo results for projected self-avoiding polygons: a two-dimensional model for knotted polymers
E Guitter and E Orlandini Journal of Physics A: Mathematical and General 32 (8) 1359 (1999) https://doi.org/10.1088/0305-4470/32/8/006
Asymptotics of knotted lattice polygons
E Orlandini, M C Tesi, E J Janse van Rensburg and S G Whittington Journal of Physics A: Mathematical and General 31 (28) 5953 (1998) https://doi.org/10.1088/0305-4470/31/28/010
Topology and Geometry in Polymer Science
Enzo Orlandini, E. J. Janse Van Rensburg, Maria Carla Tesi and S. G. Whittington The IMA Volumes in Mathematics and its Applications, Topology and Geometry in Polymer Science 103 9 (1998) https://doi.org/10.1007/978-1-4612-1712-1_2
Induced writhe in linked polygons
Myrlene Gee and Stuart G Whittington Journal of Physics A: Mathematical and General 30 (1) L1 (1997) https://doi.org/10.1088/0305-4470/30/1/001
Functional Integration
A. Sokal NATO ASI Series, Functional Integration 361 131 (1997) https://doi.org/10.1007/978-1-4899-0319-8_6
Entropic exponents of lattice polygons with specified knot type
E Orlandini, M C Tesi, E J Janse van Rensburg and S G Whittington Journal of Physics A: Mathematical and General 29 (12) L299 (1996) https://doi.org/10.1088/0305-4470/29/12/003
Monte Carlo methods for the self-avoiding walk
Alan D. Sokal Nuclear Physics B - Proceedings Supplements 47 (1-3) 172 (1996) https://doi.org/10.1016/0920-5632(96)00042-4
Fast Monte Carlo algorithms for knotted polymers
Stephen R. Quake Physical Review E 52 (1) 1176 (1995) https://doi.org/10.1103/PhysRevE.52.1176
Topological Effects of Knots in Polymers
Stephen R. Quake Physical Review Letters 73 (24) 3317 (1994) https://doi.org/10.1103/PhysRevLett.73.3317
Lattice ribbons: A model of double-stranded polymers
E.J. Janse van Rensburg, E. Orlandini, D.W Sumners, M.C. Tesi and S.G. Whittington Physical Review E 50 (6) R4279 (1994) https://doi.org/10.1103/PhysRevE.50.R4279
Different types of self-avoiding walks on deterministic fractals
Y. Shussman and A. Aharony Journal of Statistical Physics 77 (3-4) 545 (1994) https://doi.org/10.1007/BF02179449
The Monte Carlo Method in Condensed Matter Physics
Artur Baumgärtner Topics in Applied Physics, The Monte Carlo Method in Condensed Matter Physics 71 285 (1992) https://doi.org/10.1007/3-540-60174-0_9
Ergodicity of the BFACF algorithm in three dimensions
E J Janse van Rensburg Journal of Physics A: Mathematical and General 25 (5) 1031 (1992) https://doi.org/10.1088/0305-4470/25/5/012
Join- and-cut algorithm for self-avoiding walks with variable length and free endpoints
Sergio Caracciolo, Andrea Pelissetto and AJan D. Sokal Journal of Statistical Physics 67 (1-2) 65 (1992) https://doi.org/10.1007/BF01049027
The Monte Carlo Method in Condensed Matter Physics
Artur Baumgärtner Topics in Applied Physics, The Monte Carlo Method in Condensed Matter Physics 71 285 (1992) https://doi.org/10.1007/978-3-662-02855-1_9
Wetting dynamics: two simple models
J Cook and D E Wolf Journal of Physics A: Mathematical and General 24 (7) L351 (1991) https://doi.org/10.1088/0305-4470/24/7/007
The BFACF algorithm and knotted polygons
E J Janse van Rensburg and S G Whittington Journal of Physics A: Mathematical and General 24 (23) 5553 (1991) https://doi.org/10.1088/0305-4470/24/23/021
Non-local Monte Carlo algorithm for self-avoiding walks with variable length and free endpoints
Sergio Caracciolo, Andrea Pelissetto and Alan D. Sokal Nuclear Physics B - Proceedings Supplements 20 68 (1991) https://doi.org/10.1016/0920-5632(91)90882-F
The dimensions of knotted polygons
E J Janse van Rensburg and S G Whittington Journal of Physics A: Mathematical and General 24 (16) 3935 (1991) https://doi.org/10.1088/0305-4470/24/16/028
Dynamic critical exponent of the BFACF algorithm for self-avoiding walks
Sergio Caracciolo, Andrea Pelissetto and Alan D. Sokal Journal of Statistical Physics 63 (5-6) 857 (1991) https://doi.org/10.1007/BF01029987
Monte Carlo simulation of lattice models for macromolecules at high densities
Johannes Reiter, Thomas Edling and Tadeusz Pakula The Journal of Chemical Physics 93 (1) 837 (1990) https://doi.org/10.1063/1.459453
Monte Carlo generation of self-avoiding walks with fixed endpoints and fixed length
N. Madras, A. Orlitsky and L. A. Shepp Journal of Statistical Physics 58 (1-2) 159 (1990) https://doi.org/10.1007/BF01020290
Monte Carlo test of a hyperscaling relation for the two-dimensional self-avoiding walk. II
S Caracciolo, A Pelissetto and A D Sokal Journal of Physics A: Mathematical and General 23 (20) 4509 (1990) https://doi.org/10.1088/0305-4470/23/20/012
Nonlocal Monte Carlo algorithm for self-avoiding walks with fixed endpoints
Sergio Caracciolo, Andrea Pelissetto and Alan D. Sokal Journal of Statistical Physics 60 (1-2) 1 (1990) https://doi.org/10.1007/BF01013668
Performance of new algorithms for self-avoiding walks with fixed endpoints
Sergio Caracciolo, Andrea Pelissetto and Alan D. Sokal Nuclear Physics B - Proceedings Supplements 9 525 (1989) https://doi.org/10.1016/0920-5632(89)90155-2
Self-avoiding random loops
L.E. Dubins, A. Orlitsky, J.A. Reeds and L.A. Shepp IEEE Transactions on Information Theory 34 (6) 1509 (1988) https://doi.org/10.1109/18.21290
Absence of mass gap for a class of stochastic contour models
Alan D. Sokal and Lawrence E. Thomas Journal of Statistical Physics 51 (5-6) 907 (1988) https://doi.org/10.1007/BF01014892
Relation between the two-dimensional self-avoiding walk and the Eden model
Pierre Devillard Physica A: Statistical Mechanics and its Applications 153 (2) 189 (1988) https://doi.org/10.1016/0378-4371(88)90001-5
Computer Simulation Studies in Condensed Matter Physics
A. D. Sokal Springer Proceedings in Physics, Computer Simulation Studies in Condensed Matter Physics 33 6 (1988) https://doi.org/10.1007/978-3-642-93400-1_2
Monte Carlo simulation of lattice models for macromolecules
Kurt Kremer and Kurt Binder Computer Physics Reports 7 (6) 259 (1988) https://doi.org/10.1016/0167-7977(88)90015-9
Adsorption of a Theta Polymer: Competition Between Mean-Field and Multicritical Behaviour
F. van Dieren and K Kremer Europhysics Letters (EPL) 4 (5) 569 (1987) https://doi.org/10.1209/0295-5075/4/5/010
A Monte Carlo analysis of self-avoiding walks in three dimensions
J M Pureza, C Aragao de Carvalho and S L A de Queiroz Journal of Physics A: Mathematical and General 20 (13) 4409 (1987) https://doi.org/10.1088/0305-4470/20/13/041
Nonergodicity of local, length-conserving Monte Carlo algorithms for the self-avoiding walk
Neal Madras and Alan D. Sokal Journal of Statistical Physics 47 (3-4) 573 (1987) https://doi.org/10.1007/BF01007527
Monte Carlo test of a hyperscaling relation for the two-dimensional self-avoiding walk
S Caracciolo and A D Sokal Journal of Physics A: Mathematical and General 20 (9) 2569 (1987) https://doi.org/10.1088/0305-4470/20/9/040
Applications of the Monte Carlo Method in Statistical Physics
K. Binder, A. Baumgärtner, J. P. Hansen, et al. Topics in Current Physics, Applications of the Monte Carlo Method in Statistical Physics 36 299 (1987) https://doi.org/10.1007/978-3-642-51703-7_10
Polymer chains in four dimensions
Bertrand Duplantier Nuclear Physics B 275 (2) 319 (1986) https://doi.org/10.1016/0550-3213(86)90602-4
Dynamic critical exponent of some Monte Carlo algorithms for the self-avoiding walk
S Caracciolo and A D Sokal Journal of Physics A: Mathematical and General 19 (13) L797 (1986) https://doi.org/10.1088/0305-4470/19/13/008
Geometrical cluster growth models and kinetic gelation
H.J. Herrmann Physics Reports 136 (3) 153 (1986) https://doi.org/10.1016/0370-1573(86)90047-5
A Monte Carlo method for series expansions
D Dhar and P M Lam Journal of Physics A: Mathematical and General 19 (17) L1057 (1986) https://doi.org/10.1088/0305-4470/19/17/002
On the Euler characteristics of random surfaces
Robert Schrader Journal of Statistical Physics 40 (3-4) 533 (1985) https://doi.org/10.1007/BF01017184
Monte Carlo method for random surfaces
B. Berg, A. Billoire and D. Foerster Nuclear Physics B 251 665 (1985) https://doi.org/10.1016/S0550-3213(85)80002-X
New Monte Carlo method for the self-avoiding walk
Alberto Berretti and Alan D. Sokal Journal of Statistical Physics 40 (3-4) 483 (1985) https://doi.org/10.1007/BF01017183
A Monte Carlo simulation of random surfaces
B. Berg and A. Billoire Physics Letters B 139 (4) 297 (1984) https://doi.org/10.1016/0370-2693(84)91084-0
Numerical study of self-avoiding loops on d-dimensional hypercubic lattices
M Karowski, H J Thun, W Helfrich and F S Rys Journal of Physics A: Mathematical and General 16 (17) 4073 (1983) https://doi.org/10.1088/0305-4470/16/17/023