Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Thermodynamic and topological properties of copolymer rings with a segregation/mixing transition

E J Janse van Rensburg, E Orlandini, M C Tesi and S G Whittington
Journal of Physics A: Mathematical and Theoretical 55 (43) 435002 (2022)
https://doi.org/10.1088/1751-8121/ac9936

Asymptotics of multicomponent linked polygons

A Bonato, E Orlandini and S G Whittington
Journal of Physics A: Mathematical and Theoretical 54 (23) 235002 (2021)
https://doi.org/10.1088/1751-8121/abf872

Linking and link complexity of geometrically constrained pairs of rings

E Orlandini, M C Tesi and S G Whittington
Journal of Physics A: Mathematical and Theoretical 54 (50) 505002 (2021)
https://doi.org/10.1088/1751-8121/ac385a

Bounds for minimum step number of knots confined to tubes in the simple cubic lattice

Kai Ishihara, Maxime Pouokam, Atsumi Suzuki, et al.
Journal of Physics A: Mathematical and Theoretical 50 (21) 215601 (2017)
https://doi.org/10.1088/1751-8121/aa6a4f

Ultrametricity of optimal transport substates for multiple interacting paths over a square lattice network

Marco Cogoni, Giovanni Busonera and Gianluigi Zanetti
Physical Review E 95 (3) (2017)
https://doi.org/10.1103/PhysRevE.95.030108

Current theoretical models fail to predict the topological complexity of the human genome

Javier Arsuaga, Reyka G. Jayasinghe, Robert G. Scharein, et al.
Frontiers in Molecular Biosciences 2 (2015)
https://doi.org/10.3389/fmolb.2015.00048

Knotted Globular Ring Polymers: How Topology Affects Statistics and Thermodynamics

Marco Baiesi, Enzo Orlandini and Attilio L. Stella
Macromolecules 47 (23) 8466 (2014)
https://doi.org/10.1021/ma5020287

New biologically motivated knot table

Reuben Brasher, Rob G. Scharein and Mariel Vazquez
Biochemical Society Transactions 41 (2) 606 (2013)
https://doi.org/10.1042/BST20120278

Bounds for the minimum step number of knots confined to slabs in the simple cubic lattice

K Ishihara, R Scharein, Y Diao, et al.
Journal of Physics A: Mathematical and Theoretical 45 (6) 065003 (2012)
https://doi.org/10.1088/1751-8113/45/6/065003

BFACF-style algorithms for polygons in the body-centered and face-centered cubic lattices

E J Janse van Rensburg and A Rechnitzer
Journal of Physics A: Mathematical and Theoretical 44 (16) 165001 (2011)
https://doi.org/10.1088/1751-8113/44/16/165001

On the mean and variance of the writhe of random polygons

J Portillo, Y Diao, R Scharein, J Arsuaga and M Vazquez
Journal of Physics A: Mathematical and Theoretical 44 (27) 275004 (2011)
https://doi.org/10.1088/1751-8113/44/27/275004

Knotting probabilities after a local strand passage in unknotted self-avoiding polygons

M L Szafron and C E Soteros
Journal of Physics A: Mathematical and Theoretical 44 (24) 245003 (2011)
https://doi.org/10.1088/1751-8113/44/24/245003

Polymers with spatial or topological constraints: Theoretical and computational results

Cristian Micheletti, Davide Marenduzzo and Enzo Orlandini
Physics Reports 504 (1) 1 (2011)
https://doi.org/10.1016/j.physrep.2011.03.003

Influence of variable hydrodynamic interaction strength on the transport properties of coiled polymers

Marc L. Mansfield and Jack F. Douglas
Physical Review E 81 (2) (2010)
https://doi.org/10.1103/PhysRevE.81.021803

Properties of knotted ring polymers. I. Equilibrium dimensions

Marc L. Mansfield and Jack F. Douglas
The Journal of Chemical Physics 133 (4) (2010)
https://doi.org/10.1063/1.3457160

Bounds for the minimum step number of knots in the simple cubic lattice

R Scharein, K Ishihara, J Arsuaga, et al.
Journal of Physics A: Mathematical and Theoretical 42 (47) 475006 (2009)
https://doi.org/10.1088/1751-8113/42/47/475006

Random state transitions of knots: a first step towards modeling unknotting by type II topoisomerases

Xia Hua, Diana Nguyen, Barath Raghavan, Javier Arsuaga and Mariel Vazquez
Topology and its Applications 154 (7) 1381 (2007)
https://doi.org/10.1016/j.topol.2006.05.010

Development of knotting during the collapse transition of polymers

Marc L. Mansfield
The Journal of Chemical Physics 127 (24) (2007)
https://doi.org/10.1063/1.2806929

Dynamic critical behavior of an extended reptation dynamics for self-avoiding walks

Sergio Caracciolo, Mauro Papinutto and Andrea Pelissetto
Physical Review E 65 (3) (2002)
https://doi.org/10.1103/PhysRevE.65.031106

Monte Carlo results for projected self-avoiding polygons: a two-dimensional model for knotted polymers

E Guitter and E Orlandini
Journal of Physics A: Mathematical and General 32 (8) 1359 (1999)
https://doi.org/10.1088/0305-4470/32/8/006

Asymptotics of knotted lattice polygons

E Orlandini, M C Tesi, E J Janse van Rensburg and S G Whittington
Journal of Physics A: Mathematical and General 31 (28) 5953 (1998)
https://doi.org/10.1088/0305-4470/31/28/010

Topology and Geometry in Polymer Science

Enzo Orlandini, E. J. Janse Van Rensburg, Maria Carla Tesi and S. G. Whittington
The IMA Volumes in Mathematics and its Applications, Topology and Geometry in Polymer Science 103 9 (1998)
https://doi.org/10.1007/978-1-4612-1712-1_2

Entropic exponents of lattice polygons with specified knot type

E Orlandini, M C Tesi, E J Janse van Rensburg and S G Whittington
Journal of Physics A: Mathematical and General 29 (12) L299 (1996)
https://doi.org/10.1088/0305-4470/29/12/003

Lattice ribbons: A model of double-stranded polymers

E.J. Janse van Rensburg, E. Orlandini, D.W Sumners, M.C. Tesi and S.G. Whittington
Physical Review E 50 (6) R4279 (1994)
https://doi.org/10.1103/PhysRevE.50.R4279

Different types of self-avoiding walks on deterministic fractals

Y. Shussman and A. Aharony
Journal of Statistical Physics 77 (3-4) 545 (1994)
https://doi.org/10.1007/BF02179449

The Monte Carlo Method in Condensed Matter Physics

Artur Baumgärtner
Topics in Applied Physics, The Monte Carlo Method in Condensed Matter Physics 71 285 (1992)
https://doi.org/10.1007/3-540-60174-0_9

Join- and-cut algorithm for self-avoiding walks with variable length and free endpoints

Sergio Caracciolo, Andrea Pelissetto and AJan D. Sokal
Journal of Statistical Physics 67 (1-2) 65 (1992)
https://doi.org/10.1007/BF01049027

Non-local Monte Carlo algorithm for self-avoiding walks with variable length and free endpoints

Sergio Caracciolo, Andrea Pelissetto and Alan D. Sokal
Nuclear Physics B - Proceedings Supplements 20 68 (1991)
https://doi.org/10.1016/0920-5632(91)90882-F

Dynamic critical exponent of the BFACF algorithm for self-avoiding walks

Sergio Caracciolo, Andrea Pelissetto and Alan D. Sokal
Journal of Statistical Physics 63 (5-6) 857 (1991)
https://doi.org/10.1007/BF01029987

Monte Carlo simulation of lattice models for macromolecules at high densities

Johannes Reiter, Thomas Edling and Tadeusz Pakula
The Journal of Chemical Physics 93 (1) 837 (1990)
https://doi.org/10.1063/1.459453

Monte Carlo generation of self-avoiding walks with fixed endpoints and fixed length

N. Madras, A. Orlitsky and L. A. Shepp
Journal of Statistical Physics 58 (1-2) 159 (1990)
https://doi.org/10.1007/BF01020290

Monte Carlo test of a hyperscaling relation for the two-dimensional self-avoiding walk. II

S Caracciolo, A Pelissetto and A D Sokal
Journal of Physics A: Mathematical and General 23 (20) 4509 (1990)
https://doi.org/10.1088/0305-4470/23/20/012

Nonlocal Monte Carlo algorithm for self-avoiding walks with fixed endpoints

Sergio Caracciolo, Andrea Pelissetto and Alan D. Sokal
Journal of Statistical Physics 60 (1-2) 1 (1990)
https://doi.org/10.1007/BF01013668

Performance of new algorithms for self-avoiding walks with fixed endpoints

Sergio Caracciolo, Andrea Pelissetto and Alan D. Sokal
Nuclear Physics B - Proceedings Supplements 9 525 (1989)
https://doi.org/10.1016/0920-5632(89)90155-2

Self-avoiding random loops

L.E. Dubins, A. Orlitsky, J.A. Reeds and L.A. Shepp
IEEE Transactions on Information Theory 34 (6) 1509 (1988)
https://doi.org/10.1109/18.21290

Absence of mass gap for a class of stochastic contour models

Alan D. Sokal and Lawrence E. Thomas
Journal of Statistical Physics 51 (5-6) 907 (1988)
https://doi.org/10.1007/BF01014892

A Monte Carlo analysis of self-avoiding walks in three dimensions

J M Pureza, C Aragao de Carvalho and S L A de Queiroz
Journal of Physics A: Mathematical and General 20 (13) 4409 (1987)
https://doi.org/10.1088/0305-4470/20/13/041

Nonergodicity of local, length-conserving Monte Carlo algorithms for the self-avoiding walk

Neal Madras and Alan D. Sokal
Journal of Statistical Physics 47 (3-4) 573 (1987)
https://doi.org/10.1007/BF01007527

Monte Carlo test of a hyperscaling relation for the two-dimensional self-avoiding walk

S Caracciolo and A D Sokal
Journal of Physics A: Mathematical and General 20 (9) 2569 (1987)
https://doi.org/10.1088/0305-4470/20/9/040

Applications of the Monte Carlo Method in Statistical Physics

K. Binder, A. Baumgärtner, J. P. Hansen, et al.
Topics in Current Physics, Applications of the Monte Carlo Method in Statistical Physics 36 299 (1987)
https://doi.org/10.1007/978-3-642-51703-7_10

Dynamic critical exponent of some Monte Carlo algorithms for the self-avoiding walk

S Caracciolo and A D Sokal
Journal of Physics A: Mathematical and General 19 (13) L797 (1986)
https://doi.org/10.1088/0305-4470/19/13/008

New Monte Carlo method for the self-avoiding walk

Alberto Berretti and Alan D. Sokal
Journal of Statistical Physics 40 (3-4) 483 (1985)
https://doi.org/10.1007/BF01017183

Numerical study of self-avoiding loops on d-dimensional hypercubic lattices

M Karowski, H J Thun, W Helfrich and F S Rys
Journal of Physics A: Mathematical and General 16 (17) 4073 (1983)
https://doi.org/10.1088/0305-4470/16/17/023