Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Itinerant electron metamagnetism for lattices with van Hove singularities near the Fermi level

F. A. Vasilevskiy, P. A. Igoshev and V. Yu. Irkhin
Physical Review B 111 (10) (2025)
https://doi.org/10.1103/PhysRevB.111.104429

Metamagnetism of Itinerant Electrons in the Hubbard Model for the FCC Lattice, Caused by the Van Hove Singularity

F. A. Vasilevskiy, P. A. Igoshev and V. Yu. Irkhin
Bulletin of the Russian Academy of Sciences: Physics 88 (9) 1459 (2024)
https://doi.org/10.1134/S1062873824707694

Unusual strong ferromagnetism in site-ordered cubic Laves phase compound LuInCo4 with Co-pyrochlore lattice

Taiki Shiotani, Takeshi Waki, Yoshikazu Tabata, Hiroyuki Nakamura and Hiroto Ohta
Physical Review Materials 8 (11) (2024)
https://doi.org/10.1103/PhysRevMaterials.8.114409

Hall effect of itinerant electron metamagnet Co(S1-Se )2

Kosuke Tanabe, Yoshiro Maekawa, Hirofumi Wada, Kunihiko Yamauchi, Tamio Oguchi and Hisatomo Harima
Journal of Magnetism and Magnetic Materials 557 169460 (2022)
https://doi.org/10.1016/j.jmmm.2022.169460

Gradual resistive switching: Insights from inverse nonexponential decay and unified theoretical modeling

Zhi-Hong Wang, G. Cristiani, H.-U. Habermeier and B.-G. Shen
Applied Physics Letters 115 (24) (2019)
https://doi.org/10.1063/1.5117787

Uniaxial Stress Technique and Investigations of Correlated Electron Systems

Mark Edward Barber
Springer Theses, Uniaxial Stress Technique and Investigations of Correlated Electron Systems 111 (2018)
https://doi.org/10.1007/978-3-319-93973-5_4

Persistent values of magnetocaloric effect in the multicomponent Laves phase compounds with varied composition

V.B. Chzhan, I.S. Tereshina, A. Yu Karpenkov and E.A. Tereshina-Chitrova
Acta Materialia (2018)
https://doi.org/10.1016/j.actamat.2018.05.053

Thermoelectric properties of CuGa1−xMnxTe2: power factor enhancement by incorporation of magnetic ions

Fahim Ahmed, Naohito Tsujii and Takao Mori
Journal of Materials Chemistry A 5 (16) 7545 (2017)
https://doi.org/10.1039/C6TA11120C

Magnetostructural phase transitions and magnetocaloric effect in Tb-Dy-Ho-Co-Al alloys with a Laves phase structure

I. S. Tereshina, V. B. Chzhan, E. A. Tereshina, et al.
Journal of Applied Physics 120 (1) (2016)
https://doi.org/10.1063/1.4955047

High-field transport properties of itinerant electron metamagnetic Co(S1-xSex)2

Hirofumi Wada, Yoshiro Maekawa and Daichi Kawasaki
Journal of Science: Advanced Materials and Devices (2016)
https://doi.org/10.1016/j.jsamd.2016.06.001

Characteristic signatures of quantum criticality driven by geometrical frustration

Yoshifumi Tokiwa, Christian Stingl, Moo-Sung Kim, Toshiro Takabatake and Philipp Gegenwart
Science Advances 1 (3) (2015)
https://doi.org/10.1126/sciadv.1500001

Evolution of ferromagnetic and non-Fermi-liquid states with doping: The case of Ru-doped UCoGe

Michal Vališka, Jiří Pospíšil, Martin Diviš, et al.
Physical Review B 92 (4) (2015)
https://doi.org/10.1103/PhysRevB.92.045114

Field-tunable spin-density-wave phases in Sr3Ru2O7

C. Lester, S. Ramos, R. S. Perry, et al.
Nature Materials 14 (4) 373 (2015)
https://doi.org/10.1038/nmat4181

Hysteresis of magnetostructural transitions: Repeatable and non-repeatable processes

Virgil Provenzano, Edward Della Torre, Lawrence H. Bennett and Hatem ElBidweihy
Physica B: Condensed Matter 435 138 (2014)
https://doi.org/10.1016/j.physb.2013.09.056

Anomalous itinerant-electron metamagnetic transition in the layeredSr1−xCaxCo2P2system

Masaki Imai, Chishiro Michioka, Hiroto Ohta, et al.
Physical Review B 90 (1) (2014)
https://doi.org/10.1103/PhysRevB.90.014407

Anomalous giant positive magnetoresistance and heavy fermion like behaviour in Mn11Ge8

S Pramanick, S Giri, S Majumdar, et al.
Materials Research Express 1 (2) 025047 (2014)
https://doi.org/10.1088/2053-1591/1/2/025047

Temperature-induced itinerant electron metamagnetism in intermetallic RCo3 compounds

V. E. Rodimin, I. Yu. Gaidukova, S. A. Granovskii, A. S. Markosyan and A. B. Petropavlovskii
Moscow University Physics Bulletin 66 (6) 511 (2011)
https://doi.org/10.3103/S0027134911060191

Theoretical study of magnetism in RM12B6 compounds (R=Y, La or Ce; M=Fe, Co)

G.I. Miletić and Ž. Blažina
Journal of Magnetism and Magnetic Materials 323 (18-19) 2340 (2011)
https://doi.org/10.1016/j.jmmm.2011.03.035

Itinerant Electron Metamagnetism in η-Carbide-Type Compound Co3Mo3C

Takeshi Waki, Yasuki Umemoto, Shinsuke Terazawa, et al.
Journal of the Physical Society of Japan 79 (9) 093703 (2010)
https://doi.org/10.1143/JPSJ.79.093703

Giant magnetic entropy change in colossal magnetoresistance in La0.7Ca0.3MnO3 material in low field

J. C. Debnath, R. Zeng, J. H. Kim and S. X. Dou
Journal of Applied Physics 107 (9) (2010)
https://doi.org/10.1063/1.3359808

Inhomogeneous Magnetic Phases: A Fulde-Ferrell-Larkin-Ovchinnikov-Like Phase inSr3Ru2O7

A. M. Berridge, A. G. Green, S. A. Grigera and B. D. Simons
Physical Review Letters 102 (13) (2009)
https://doi.org/10.1103/PhysRevLett.102.136404

Quantum Metamagnetic Transitions Induced by Changes in Fermi-Surface Topology: Applications to a Weak Itinerant-Electron Ferromagnet ZrZn2

Youhei Yamaji, Takahiro Misawa and Masatoshi Imada
Journal of the Physical Society of Japan 76 (6) 063702 (2007)
https://doi.org/10.1143/JPSJ.76.063702

Magnetocaloric effect in reactively-milled LaFe11.57Si1.43Hy intermetallic compounds

K. Mandal, D. Pal, O. Gutfleisch, P. Kerschl and K.-H. Müller
Journal of Applied Physics 102 (5) (2007)
https://doi.org/10.1063/1.2775877

Giant magnetic entropy change in La0.7Ca0.3MnO3in low magnetic field

A N Ulyanov, J S Kim, G M Shin, Y M Kang and S I Yoo
Journal of Physics D: Applied Physics 40 (1) 123 (2007)
https://doi.org/10.1088/0022-3727/40/1/002

Metamagnetic transition and magnetic phase diagram in NaZn13-type Pr0.2La0.8Fe11.4Al1.6 compound

Jing Chen, Hong-wei Zhang, Li-gang Zhang, Ji-rong Sun and Bao-gen Shen
Journal of Applied Physics 102 (11) (2007)
https://doi.org/10.1063/1.2819368

Itinerant-electron metamagnetic transition and giant magnetic entropy change in La0.8Ce0.2Fe11.4Si1.6 compound

Chao Xu, Guodong Li, Xiaowei Li and Ligang Wang
Chinese Science Bulletin 51 (17) 2046 (2006)
https://doi.org/10.1007/s11434-006-2078-0

Itinerant-electron metamagnetic transition and giant magnetocaloric effect in La0.8Ce0.2Fe11.4Si1.6 compound

Chao Xu, Guo-dong Li and Li-gang Wang
Journal of Applied Physics 99 (12) (2006)
https://doi.org/10.1063/1.2209548

The 3d magnetization at first-order transitions of the rare earth Laves phases R1−xYxCo2studied by measurements of magnetic hyperfine fields

M Forker, P de la Presa and A F Pasquevich
Journal of Physics: Condensed Matter 18 (1) 253 (2006)
https://doi.org/10.1088/0953-8984/18/1/018

Itinerant-electron metamagnetism and susceptibility maximum behavior in several kinds of Laves-phase compounds

M. Ohta, K. Fukamichi, A. Fujita, H. Saito and T. Goto
Journal of Alloys and Compounds 394 (1-2) 43 (2005)
https://doi.org/10.1016/j.jallcom.2004.10.038

X-ray diffraction and magnetic measurements of itinerant electron magnetism in theY3Ni13−xCoxB2system

N. Plugaru, J. Rubín, J. Bartolomé and V. Pop
Physical Review B 71 (2) (2005)
https://doi.org/10.1103/PhysRevB.71.024433

Influence of spin fluctuations on thermodynamics of itinerant-electron metamagnetic transition in La(Fe0.88Si0.12)13 compound

A Fujita, S Fujieda and K Fukamichi
Journal of Magnetism and Magnetic Materials 272-276 E629 (2004)
https://doi.org/10.1016/j.jmmm.2003.12.1147

Universal relation between the critical field of metamagnetic transition and the susceptibility maximum

H. Yamada and T. Goto
Physica B: Condensed Matter 346-347 109 (2004)
https://doi.org/10.1016/j.physb.2004.01.030

The order of magnetic phase transition in La(Fe1−xCox)11.4Si1.6 compounds

Xu Bo Liu, D.H Ryan and Z Altounian
Journal of Magnetism and Magnetic Materials 270 (3) 305 (2004)
https://doi.org/10.1016/j.jmmm.2003.08.028

Manipulation of the metamagnetic transition and entropy change in Gd5(Si,Ge)4

L. H. Lewis, Ming-hui Yu, D. O. Welch and Richard J. Gambino
Journal of Applied Physics 95 (11) 6912 (2004)
https://doi.org/10.1063/1.1688572

Kadowaki–Woods plot of exchange-enhanced Pauli paramagnetic Laves phase quasi-binary compounds Lu(Co1 xMx)2

K Fukamichi, M Ohta, A Fujita and H Saito
Journal of Physics: Condensed Matter 16 (16) 2829 (2004)
https://doi.org/10.1088/0953-8984/16/16/007

Large magnetovolume effects and band structure of itinerant-electron metamagneticLa(FexSi1−x)13compounds

A. Fujita, K. Fukamichi, J.-T. Wang and Y. Kawazoe
Physical Review B 68 (10) (2003)
https://doi.org/10.1103/PhysRevB.68.104431

Perturbed angular correlation study of the magnetic phase transitions in the rare-earth cobalt Laves phasesRCo2

M. Forker, S. Müller, P. de la Presa and A. F. Pasquevich
Physical Review B 68 (1) (2003)
https://doi.org/10.1103/PhysRevB.68.014409

Recent advances of itinerant-electron metamagnetism and related properties of intermetallic compounds

H. Yamada, K. Fukamichi and T. Goto
Physica B: Condensed Matter 327 (2-4) 148 (2003)
https://doi.org/10.1016/S0921-4526(02)01715-5

Itinerant metamagnetism and possible spin transition in LaCoO3 by temperature/hole doping

P. Ravindran, H. Fjellvåg, A. Kjekshus, P. Blaha, K. Schwarz and J. Luitz
Journal of Applied Physics 91 (1) 291 (2002)
https://doi.org/10.1063/1.1418001

Itinerant-electron metamagnetism and magneto-volume effects in Lu(Co1-xAlx)2Laves phase compounds

T Yokoyama, H Saito, K Fukamichi, et al.
Journal of Physics: Condensed Matter 13 (41) 9281 (2001)
https://doi.org/10.1088/0953-8984/13/41/317

Influence of the inhomogeneous distribution of components on itinerant-5f-electron metamagnetism in UCoAl under high pressures

N. V. Mushnikov, A. V. Andreev, T. Goto and V. Sechovsky
Philosophical Magazine B 81 (6) 569 (2001)
https://doi.org/10.1080/13642810108225452

Itinerant electron metamagnetism and peculiar magnetic properties observed in 3d and 5f intermetallics

Tsuneaki Goto, Kazuaki Fukamichi and Hideji Yamada
Physica B: Condensed Matter 300 (1-4) 167 (2001)
https://doi.org/10.1016/S0921-4526(01)00579-8

Observation of an itinerant metamagnetic transition in MnSi under high pressure

K. Koyama, T. Goto, T. Kanomata and R. Note
Physical Review B 62 (2) 986 (2000)
https://doi.org/10.1103/PhysRevB.62.986

Universal linear relation between the critical field and the inverse susceptibility for Co-based Laves-phase metamagnets

H. Saito, T. Yokoyama, Y. Terada, et al.
Solid State Communications 113 (8) 447 (2000)
https://doi.org/10.1016/S0038-1098(99)00520-7

The order of the magnetic phase transitions in RCo2(R = rare earth) intermetallic compounds

S Khmelevskyi and P Mohn
Journal of Physics: Condensed Matter 12 (45) 9453 (2000)
https://doi.org/10.1088/0953-8984/12/45/308

Magnetic properties of the 5fitinerant electron metamagnet UCoAl under high pressure

N. V. Mushnikov, T. Goto, K. Kamishima, et al.
Physical Review B 59 (10) 6877 (1999)
https://doi.org/10.1103/PhysRevB.59.6877

Itinerant-electron metamagnetism of the Laves-phase compoundsLu(Co1−xGax)2under high pressures with high magnetic fields

H. Saito, T. Yokoyama, K. Fukamichi, K. Kamishima and T. Goto
Physical Review B 59 (13) 8725 (1999)
https://doi.org/10.1103/PhysRevB.59.8725

Electronic structure and the metamagnetic transition of FeSi at extremely high magnetic fields

H Yamada, K Terao, H Ohta, T Arioka and E Kulatov
Journal of Physics: Condensed Matter 11 (27) L309 (1999)
https://doi.org/10.1088/0953-8984/11/27/101

Magnetization Measurements of Itinerant Electron Metamagnet TiBe2 at Low Temperatures down to 0.5 K

H. Mitamura, M. Takahashi, K. Takizawa, et al.
Journal of the Magnetics Society of Japan 23 (1_2) 436 (1999)
https://doi.org/10.3379/jmsjmag.23.436

Positive magnetoresistivity in a localized-moment ferromagnet with itinerant spin fluctuations:TmCo2

T. Nakama, K. Shintani, K. Yagasaki, A. T. Burkov and Y. Uwatoko
Physical Review B 60 (1) 511 (1999)
https://doi.org/10.1103/PhysRevB.60.511

Semiquantitative analysis of magnetic phase transitions in the MnFeP1−xAsx series of compounds

R. Zach, M. Guillot and J. Toboła
Journal of Applied Physics 83 (11) 7237 (1998)
https://doi.org/10.1063/1.367856

The influence of crystal electrical field on first- and second-order magnetic phase transition in Praseodymium intermetallics

P.J.von Ranke, N.A.de Oliveira and A. Caldas
Physica A: Statistical Mechanics and its Applications 256 (3-4) 397 (1998)
https://doi.org/10.1016/S0378-4371(98)00084-3

Microscopic observation of the metamagnetic transition in intermetallic compounds Y1−Nd Co3 and Y1−Gd Co3: a NMR study

Masayuki Itoh, Tadahiro Shibata, Hirotaka Tanaka, Katsuhiko Koui and Tsuneaki Goto
Journal of Magnetism and Magnetic Materials 190 (3) 210 (1998)
https://doi.org/10.1016/S0304-8853(98)00332-1

Theory of itinerant-electron metamagnetism: II. The origin of the susceptibility maximum

Yoshinori Takahashi and Tôru Sakai
Journal of Physics: Condensed Matter 10 (24) 5373 (1998)
https://doi.org/10.1088/0953-8984/10/24/014

First-order metamagnetic transition in iron monosilicide

Erkin Kulatov, Hitoshi Ohta, Toshihiko Arioka, S Halilov and L Vinokurova
Journal of Physics: Condensed Matter 9 (42) 9043 (1997)
https://doi.org/10.1088/0953-8984/9/42/018

Field-Induced Itinerant Metamagnetism in Iron Monosilicide

Erkin Kulatov and Hitoshi Ohta
Journal of the Physical Society of Japan 66 (8) 2386 (1997)
https://doi.org/10.1143/JPSJ.66.2386

Magnetic properties of the itinerant metamagnetic systemCo(S1−xSex)2under high magnetic fields and high pressure

T. Goto, Y. Shindo, H. Takahashi and S. Ogawa
Physical Review B 56 (21) 14019 (1997)
https://doi.org/10.1103/PhysRevB.56.14019

The metamagnetic phase of the cubic Laves phase transition-metal compounds

H Yamada, K Terao, S Takagi, et al.
Journal of Physics: Condensed Matter 8 (13) 2209 (1996)
https://doi.org/10.1088/0953-8984/8/13/012