La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Relativistic coupled-cluster calculations of the electron affinity and ionization potentials of lawrencium
Yangyang Guo, Lukáš F. Pašteka, Yuichiro Nagame, Tetsuya K. Sato, Ephraim Eliav, Marten L. Reitsma and Anastasia Borschevsky Physical Review A 110(2) (2024) https://doi.org/10.1103/PhysRevA.110.022817
Chemical characterization of heavy actinides and light transactinides – Experimental achievements at JAEA
Revisited relativistic Dirac–Hartree–Fock X-ray scattering factors. I. Neutral atoms with Z = 2–118
Shiroye Olukayode, Charlotte Froese Fischer and Anatoliy Volkov Acta Crystallographica Section A Foundations and Advances 79(1) 59 (2023) https://doi.org/10.1107/S2053273322010944
Assessment of the Second-Ionization Potential of Lawrencium: Investigating the End of the Actinide Series with a One-Atom-at-a-Time Gas-Phase Ion Chemistry Technique
Jeffrey T. Kwarsick, Jennifer L. Pore, Jacklyn M. Gates, et al. The Journal of Physical Chemistry A 125(31) 6818 (2021) https://doi.org/10.1021/acs.jpca.1c01961
Relativistic Effects on the Properties of Lr: A Periodic DFT Study of the Adsorption of Lr on Surfaces of Ta in Comparison with Lu and Tl
From SRAFAP to ARCA and AIDA – developments and implementation of automated aqueous-phase rapid chemistry apparatuses for heavy actinides and transactinides
Development of a He/CdI2 gas-jet system coupled to a surface-ionization type ion-source in JAEA-ISOL: towards determination of the first ionization potential of Lr (Z = 103)
Ephraim Eliav and Uzi Kaldor Challenges and Advances in Computational Chemistry and Physics, Recent Progress in Coupled Cluster Methods 11 113 (2010) https://doi.org/10.1007/978-90-481-2885-3_5
The Chemistry of the Actinide and Transactinide Elements
Ephraim Eliav and Uzi Kaldor Challenges and Advances in Computational Chemistry and Physics, Relativistic Methods for Chemists 10 279 (2010) https://doi.org/10.1007/978-1-4020-9975-5_7
Theoretical Chemistry and Physics of Heavy and Superheavy Elements
Uzi Kaldor, Ephraim Eliav and Arie Landau Progress in Theoretical Chemistry and Physics, Theoretical Chemistry and Physics of Heavy and Superheavy Elements 11 171 (2003) https://doi.org/10.1007/978-94-017-0105-1_5
Theoretical Chemistry and Physics of Heavy and Superheavy Elements
V. Pershina and D. C. Hoffman Progress in Theoretical Chemistry and Physics, Theoretical Chemistry and Physics of Heavy and Superheavy Elements 11 55 (2003) https://doi.org/10.1007/978-94-017-0105-1_3
Resonance Transition Energies and Oscillator Strengths in Lutetium and Lawrencium
M. Schädel, W. Brüchle, R. Dressler, B. Eichler, H. W. Gäggeler, R. Günther, K. E. Gregorich, D. C. Hoffman, S. Hübener, D. T. Jost, J. V. Kratz, W. Paulus, D. Schumann, S. Timokhin, N. Trautmann, A. Türler, G. Wirth and A. Yakuschev Nature 388(6637) 55 (1997) https://doi.org/10.1038/40375
Designations ofds2penergy levels in neutral zirconium, hafnium, and rutherfordium (Z=104)
Gas phase chromatography of halides of elements 104 and 105
A. Türler, H. W. Gäggeler, K. E. Gregorich, et al. Journal of Radioanalytical and Nuclear Chemistry Articles 160(2) 327 (1992) https://doi.org/10.1007/BF02037108
Relativistic and Crystal Field Effects in the Properties of the Actinides
Relativistic effects in physics and chemistry of element 105. I. Periodicities in properties of group 5 elements. Electronic structure of the pentachlorides
V. Pershina, W.-D. Sepp, B. Fricke and A. Rosén The Journal of Chemical Physics 96(11) 8367 (1992) https://doi.org/10.1063/1.462290
Ionization potentials and radii of atoms and ions of element 104 (unnilquadium) and of hafnium (2+) derived from multiconfiguration Dirac–Fock calculations
Elijah Johnson, B. Fricke, O. L. Keller, C. W. Nestor and T. C. Tucker The Journal of Chemical Physics 93(11) 8041 (1990) https://doi.org/10.1063/1.459334
Relativistic effects in kurchatovium chemistry
B. L. Zhuikov, V. A. Glebov, V. S. Nefedov and I. Zvara Journal of Radioanalytical and Nuclear Chemistry Articles 143(1) 103 (1990) https://doi.org/10.1007/BF02117552
Atom-at-a-time radiochemical separations of the heaviest elements: Lawrencium chemistry
D. C. Hoffman, R. A. Henderson, K. E. Gregorich, et al. Journal of Radioanalytical and Nuclear Chemistry Articles 124(1) 135 (1988) https://doi.org/10.1007/BF02035512
Adsorption of lawrencium on metal surfaces. An approach to the determination of the influence of relativistic effects on the electronic ground state configuration
Darleane C. Hoffman Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 249(1) 13 (1986) https://doi.org/10.1016/0168-9002(86)90236-6
Thermodynamic properties of lanthanide and actinide ions in avueous solution