Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Relativistic coupled-cluster calculations of the electron affinity and ionization potentials of lawrencium

Yangyang Guo, Lukáš F. Pašteka, Yuichiro Nagame, Tetsuya K. Sato, Ephraim Eliav, Marten L. Reitsma and Anastasia Borschevsky
Physical Review A 110 (2) (2024)
https://doi.org/10.1103/PhysRevA.110.022817

Chemical characterization of heavy actinides and light transactinides – Experimental achievements at JAEA

Yuichiro NAGAME and Tetsuya K. SATO
Proceedings of the Japan Academy, Series B 100 (3) 165 (2024)
https://doi.org/10.2183/pjab.100.011

Revisited relativistic Dirac–Hartree–Fock X-ray scattering factors. I. Neutral atoms with Z = 2–118

Shiroye Olukayode, Charlotte Froese Fischer and Anatoliy Volkov
Acta Crystallographica Section A Foundations and Advances 79 (1) 59 (2023)
https://doi.org/10.1107/S2053273322010944

El problema del grupo 3 de la Tabla Periódica: su enseñanza mediante la argumentación y la explicación científica: primera parte

Martín Labarca, Mario Roberto Quintanilla-Gatica and Mercé Izquierdo-Aymerich
Ciência & Educação (Bauru) 28 (2022)
https://doi.org/10.1590/1516-731320220013

Chemistry of the elements at the end of the actinide series using their low-energy ion-beams

Tetsuya K. Sato and Yuichiro Nagame
Radiochimica Acta 110 (6-9) 441 (2022)
https://doi.org/10.1515/ract-2022-0001

Assessment of the Second-Ionization Potential of Lawrencium: Investigating the End of the Actinide Series with a One-Atom-at-a-Time Gas-Phase Ion Chemistry Technique

Jeffrey T. Kwarsick, Jennifer L. Pore, Jacklyn M. Gates, et al.
The Journal of Physical Chemistry A 125 (31) 6818 (2021)
https://doi.org/10.1021/acs.jpca.1c01961

Relativistic Effects on the Properties of Lr: A Periodic DFT Study of the Adsorption of Lr on Surfaces of Ta in Comparison with Lu and Tl

Valeria Pershina
Inorganic Chemistry 59 (8) 5490 (2020)
https://doi.org/10.1021/acs.inorgchem.0c00120

Relativistic density functional theory with finite-light-speed correction for the Coulomb interaction: a non-relativistic-reduction-based approach

Tomoya Naito, Ryosuke Akashi, Haozhao Liang and Shinji Tsuneyuki
Journal of Physics B: Atomic, Molecular and Optical Physics 53 (21) 215002 (2020)
https://doi.org/10.1088/1361-6455/abaca6

Relativistic effects on the electronic structure of the heaviest elements. Is the Periodic Table endless?

Valeria Pershina
Comptes Rendus. Chimie 23 (3) 255 (2020)
https://doi.org/10.5802/crchim.25

On the position of La, Lu, Ac and Lr in the periodic table: a perspective

Aditi Chandrasekar, Meenakshi Joshi and Tapan K Ghanty
Journal of Chemical Sciences 131 (12) (2019)
https://doi.org/10.1007/s12039-019-1713-7

Evolution of the periodic table through the synthesis of new elements

Alexander T. Chemey and Thomas E. Albrecht-Schmitt
Radiochimica Acta 107 (9-11) 771 (2019)
https://doi.org/10.1515/ract-2018-3082

From SRAFAP to ARCA and AIDA – developments and implementation of automated aqueous-phase rapid chemistry apparatuses for heavy actinides and transactinides

Matthias Schädel and Yuichiro Nagame
Radiochimica Acta 107 (7) 561 (2019)
https://doi.org/10.1515/ract-2019-3103

Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties

Valeria Pershina
Radiochimica Acta 107 (9-11) 833 (2019)
https://doi.org/10.1515/ract-2018-3098

Calculation of atomic spectra and transition amplitudes for the superheavy element Db ( Z =105)

B. G. C. Lackenby, V. A. Dzuba and V. V. Flambaum
Physical Review A 98 (2) (2018)
https://doi.org/10.1103/PhysRevA.98.022518

Theoretical investigation of M@Pb122− and M@Sn122− Zintl clusters (M = Lrn+, Lun+, La3+, Ac3+ and n = 0, 1, 2, 3)

Meenakshi Joshi, Aditi Chandrasekar and Tapan K. Ghanty
Physical Chemistry Chemical Physics 20 (22) 15253 (2018)
https://doi.org/10.1039/C8CP01056K

Generalized quantum similarity in atomic systems: A quantifier of relativistic effects

A.L. Martín, J.C. Angulo, J. Antolín and S. López-Rosa
Physica A: Statistical Mechanics and its Applications 467 315 (2017)
https://doi.org/10.1016/j.physa.2016.09.060

First ionization potential of the heaviest actinide lawrencium, element 103

Tetsuya K. Sato, Masato Asai, Anastasia Borschevsky, et al.
EPJ Web of Conferences 131 05001 (2016)
https://doi.org/10.1051/epjconf/201613105001

Development of a He/CdI2 gas-jet system coupled to a surface-ionization type ion-source in JAEA-ISOL: towards determination of the first ionization potential of Lr (Z = 103)

T. K. Sato, M. Asai, N. Sato, et al.
Journal of Radioanalytical and Nuclear Chemistry 303 (2) 1253 (2015)
https://doi.org/10.1007/s10967-014-3467-5

Measurement of the first ionization potential of lawrencium, element 103

T. K. Sato, M. Asai, A. Borschevsky, et al.
Nature 520 (7546) 209 (2015)
https://doi.org/10.1038/nature14342

Advances in the Production and Chemistry of the Heaviest Elements

Andreas Türler and Valeria Pershina
Chemical Reviews 113 (2) 1237 (2013)
https://doi.org/10.1021/cr3002438

Fast chemical separations and laser mass spectrometry – tools for nuclear research

N. Trautmann and K. Wendt
Radiochimica Acta 100 (8-9) 675 (2012)
https://doi.org/10.1524/ract.2012.1951

The Chemistry of the Actinide and Transactinide Elements

Darleane C. Hoffman, Diana M. Lee and Valeria Pershina
The Chemistry of the Actinide and Transactinide Elements 1652 (2010)
https://doi.org/10.1007/978-94-007-0211-0_14

Recent Progress in Coupled Cluster Methods

Ephraim Eliav and Uzi Kaldor
Challenges and Advances in Computational Chemistry and Physics, Recent Progress in Coupled Cluster Methods 11 113 (2010)
https://doi.org/10.1007/978-90-481-2885-3_5

Relativistic Methods for Chemists

Ephraim Eliav and Uzi Kaldor
Challenges and Advances in Computational Chemistry and Physics, Relativistic Methods for Chemists 10 279 (2010)
https://doi.org/10.1007/978-1-4020-9975-5_7

Relativistic Quantum Theory of Atoms and Molecules

Springer Series on Atomic, Optical, and Plasma Physics, Relativistic Quantum Theory of Atoms and Molecules 40 433 (2007)
https://doi.org/10.1007/978-0-387-35069-1_8

Relativistic Electronic Structure Theory - Part 2. Applications

Uzi Kaldor, Ephraim Eliav and Arie Landau
Theoretical and Computational Chemistry, Relativistic Electronic Structure Theory - Part 2. Applications 14 81 (2004)
https://doi.org/10.1016/S1380-7323(04)80029-3

Relativistic Electronic Structure Theory - Part 2. Applications

V. Pershina
Theoretical and Computational Chemistry, Relativistic Electronic Structure Theory - Part 2. Applications 14 1 (2004)
https://doi.org/10.1016/S1380-7323(04)80028-1

Theoretical Chemistry and Physics of Heavy and Superheavy Elements

Uzi Kaldor, Ephraim Eliav and Arie Landau
Progress in Theoretical Chemistry and Physics, Theoretical Chemistry and Physics of Heavy and Superheavy Elements 11 171 (2003)
https://doi.org/10.1007/978-94-017-0105-1_5

Theoretical Chemistry and Physics of Heavy and Superheavy Elements

V. Pershina and D. C. Hoffman
Progress in Theoretical Chemistry and Physics, Theoretical Chemistry and Physics of Heavy and Superheavy Elements 11 55 (2003)
https://doi.org/10.1007/978-94-017-0105-1_3

Microscopic Quantum Many-Body Theories and Their Applications

Uzi Kaldor
Lecture Notes in Physics, Microscopic Quantum Many-Body Theories and Their Applications 510 71 (1998)
https://doi.org/10.1007/BFb0104524

Determination of the first ionization potential of actinide elements by resonance ionization mass spectroscopy

S. Köhler, R. Deiβenberger, K. Eberhardt, et al.
Spectrochimica Acta Part B: Atomic Spectroscopy 52 (6) 717 (1997)
https://doi.org/10.1016/S0584-8547(96)01670-9

Chemical properties of element 106 (seaborgium)

M. Schädel, W. Brüchle, R. Dressler, B. Eichler, H. W. Gäggeler, R. Günther, K. E. Gregorich, D. C. Hoffman, S. Hübener, D. T. Jost, J. V. Kratz, W. Paulus, D. Schumann, S. Timokhin, N. Trautmann, A. Türler, G. Wirth and A. Yakuschev
Nature 388 (6637) 55 (1997)
https://doi.org/10.1038/40375

Electronic energies of americium from multiconfiguration Dirac-Fock calculations

Elijah Johnson, M. O. Krause and B. Fricke
Physical Review A 54 (6) 4783 (1996)
https://doi.org/10.1103/PhysRevA.54.4783

Electronic Structure and Properties of the Transactinides and Their Compounds

Valeria G. Pershina
Chemical Reviews 96 (6) 1977 (1996)
https://doi.org/10.1021/cr941182g

Transition energies of ytterbium, lutetium, and lawrencium by the relativistic coupled-cluster method

Ephraim Eliav, Uzi Kaldor and Yasuyuki Ishikawa
Physical Review A 52 (1) 291 (1995)
https://doi.org/10.1103/PhysRevA.52.291

Ground State Electron Configuration of Rutherfordium: Role of Dynamic Correlation

Ephraim Eliav, Uzi Kaldor and Yasuyuki Ishikawa
Physical Review Letters 74 (7) 1079 (1995)
https://doi.org/10.1103/PhysRevLett.74.1079

Relativistic and correlation effects in the ground state of atomic lawrencium

W. P. Wijesundera, S. H. Vosko and F. A. Parpia
Physical Review A 51 (1) 278 (1995)
https://doi.org/10.1103/PhysRevA.51.278

Relativistic effects in physics and chemistry of element 105. IV. Their influence on the electronic structure and related properties

V. Pershina and B. Fricke
The Journal of Chemical Physics 99 (12) 9720 (1993)
https://doi.org/10.1063/1.465454

Gas phase chromatography of halides of elements 104 and 105

A. Türler, H. W. Gäggeler, K. E. Gregorich, et al.
Journal of Radioanalytical and Nuclear Chemistry Articles 160 (2) 327 (1992)
https://doi.org/10.1007/BF02037108

Relativistic effects in physics and chemistry of element 105. I. Periodicities in properties of group 5 elements. Electronic structure of the pentachlorides

V. Pershina, W.-D. Sepp, B. Fricke and A. Rosén
The Journal of Chemical Physics 96 (11) 8367 (1992)
https://doi.org/10.1063/1.462290

Ionization potentials and radii of atoms and ions of element 104 (unnilquadium) and of hafnium (2+) derived from multiconfiguration Dirac–Fock calculations

Elijah Johnson, B. Fricke, O. L. Keller, C. W. Nestor and T. C. Tucker
The Journal of Chemical Physics 93 (11) 8041 (1990)
https://doi.org/10.1063/1.459334

Relativistic effects in kurchatovium chemistry

B. L. Zhuikov, V. A. Glebov, V. S. Nefedov and I. Zvara
Journal of Radioanalytical and Nuclear Chemistry Articles 143 (1) 103 (1990)
https://doi.org/10.1007/BF02117552

Atom-at-a-time radiochemical separations of the heaviest elements: Lawrencium chemistry

D. C. Hoffman, R. A. Henderson, K. E. Gregorich, et al.
Journal of Radioanalytical and Nuclear Chemistry Articles 124 (1) 135 (1988)
https://doi.org/10.1007/BF02035512

Adsorption of lawrencium on metal surfaces. An approach to the determination of the influence of relativistic effects on the electronic ground state configuration

B. Eichler, S. Hübener, H.W. Gäggeler and D.T. Jost
Inorganica Chimica Acta 146 (2) 261 (1988)
https://doi.org/10.1016/S0020-1693(00)80618-0

Lawrencium chemistry: no evidence for oxidation states lower than 3+ in aqueous solution

U.W. Scherer, J.V. Kratz, M. Schädel, et al.
Inorganica Chimica Acta 146 (2) 249 (1988)
https://doi.org/10.1016/S0020-1693(00)80616-7

Transuranium isotopes

Darleane C. Hoffman
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 249 (1) 13 (1986)
https://doi.org/10.1016/0168-9002(86)90236-6