La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
J. Blinowski , C. Rigaux
J. Phys. France, 41 7 (1980) 667-676
Citations de cet article :
92 articles
Some thermodynamical peculiarities at the Lifshitz topological transitions in trigonally warped AB-stacked bilayer graphene and graphite near K points
V. N. Davydov Philosophical Magazine 101 (7) 867 (2021) https://doi.org/10.1080/14786435.2020.1869341
Magnetoresistance of graphite intercalated with cobalt
Iryna Ovsiienko, Lyudmila Matzui, Igor Berkutov, et al. Journal of Materials Science 53 (1) 716 (2018) https://doi.org/10.1007/s10853-017-1511-x
The recurrent relations for the electronic band structure of the multilayer graphene
V. N. Davydov Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2220) 20180439 (2018) https://doi.org/10.1098/rspa.2018.0439
Weak localization and interaction effects in acceptor graphite intercalation compounds
O. I. Prokopov, I. V. Ovsiienko, L. Yu. Matzui, et al. Low Temperature Physics 43 (6) 703 (2017) https://doi.org/10.1063/1.4985977
Feature-rich electronic excitations of silicene in external fields
Jhao-Ying Wu, Szu-Chao Chen, Godfrey Gumbs and Ming-Fa Lin Physical Review B 94 (20) (2016) https://doi.org/10.1103/PhysRevB.94.205427
Chemical Functionalization of Carbon Nanomaterials
Suman Chowdhury, Ritwika Das, Palash Nath, Dirtha Sanyal and Debnarayan Jana Chemical Functionalization of Carbon Nanomaterials 948 (2015) https://doi.org/10.1201/b18724-45
What's Next for Low-Dimensional Materials?
M. S. Dresselhaus Materials Research Letters 2 (1) 1 (2014) https://doi.org/10.1080/21663831.2013.838194
Carbons for Electrochemical Energy Storage and Conversion Systems
Toshiaki Enoki Advanced Materials and Technologies, Carbons for Electrochemical Energy Storage and Conversion Systems 20091238 221 (2009) https://doi.org/10.1201/9781420055405-c6
Electronic properties and superconductivity of low-dimensional carbon structures
V. A. Kulbachinskiı̆ Low Temperature Physics 30 (11) 826 (2004) https://doi.org/10.1063/1.1819856
Shubnikov-de haas effect and energy spectra of graphite-nitric acid intercalation compounds
V. A. Kulbachinskii, N. E. Sorokina, S. V. Kuvshinnikov and S. G. Ionov Physics of the Solid State 45 (12) 2264 (2003) https://doi.org/10.1134/1.1635495
Electron-phonon scattering in HgBr2and IBr graphite intercalation compounds
M Barati, P K Ummat and W R Datars Journal of Physics: Condensed Matter 11 (29) 5569 (1999) https://doi.org/10.1088/0953-8984/11/29/303
Shubnikov-De Haas effect and angular dependent magnetoresistance oscillations in SbCl5-intercalated graphite
M. Baxendale, V.Z. Mordkovich and S. Yoshimura Solid State Communications 107 (4) 165 (1998) https://doi.org/10.1016/S0038-1098(98)00171-9
Theory of thea- andc-Axis Resistivity and Magnetoresistance in MoCl5Graphite Intercalation Compounds
Ko Sugihara, Keiko Matsubara, Itsuko S. Suzuki and Masatsugu Suzuki Journal of the Physical Society of Japan 67 (12) 4169 (1998) https://doi.org/10.1143/JPSJ.67.4169
Pressure dependence of the electronic structure in the stage-3 HgCl2 graphite intercalation compound studied via the de Haas-van alphen effect
Masahiro Takashita, Haruyoshi Aoki, Takehiko Matsumoto, et al. Czechoslovak Journal of Physics 46 (S5) 2535 (1996) https://doi.org/10.1007/BF02570254
Electronic properties of chloride acceptor graphite intercalation compounds with AuCl3
W.R. Datars, D. Marchesan and P.K. Ummat Journal of Physics and Chemistry of Solids 57 (6-8) 791 (1996) https://doi.org/10.1016/0022-3697(96)00351-4
Electronic states in the stage-3 mercury chloride graphite intercalation compound
D. Marchesan, T. R. Chien, G. Wang, P. K. Ummat and W. R. Datars Physical Review B 52 (12) 9061 (1995) https://doi.org/10.1103/PhysRevB.52.9061
Electronic Structures of Sodium-Hydride-Graphite Intercalation Compounds
Toshiaki Enoki, Noriaki Sakamoto, Keisuke Nakazawa, et al. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 245 (1) 7 (1994) https://doi.org/10.1080/10587259408051658
Electronic structure and growth mechanism of carbon tubules
Riichiro Saito, Mitsutaka Fujita, G. Dresselhaus and M.S. Dresselhaus Materials Science and Engineering: B 19 (1-2) 185 (1993) https://doi.org/10.1016/0921-5107(93)90186-Q
c-axis electrical conductivity and thermoelectric power of sodium hydride–graphite ternary intercalation compounds
Toshiaki Enoki, Noriaki Sakamoto, Keisuke Nakazawa, et al. Physical Review B 47 (16) 10662 (1993) https://doi.org/10.1103/PhysRevB.47.10662
Electronic structure of double‐layer graphene tubules
Riichiro Saito, G. Dresselhaus and M. S. Dresselhaus Journal of Applied Physics 73 (2) 494 (1993) https://doi.org/10.1063/1.353358
Raman-scattering and transmission-electron-microscopy studies of fluorine-intercalated graphite fibersCxF (7.8≥x≥2.9)
A. M. Rao, A. W. P. Fung, S. L. di Vittorio, et al. Physical Review B 45 (12) 6883 (1992) https://doi.org/10.1103/PhysRevB.45.6883
Electron-spin-resonance study of fluorine-intercalated graphite fibers
S. L. di Vittorio, T. Enoki, M. S. Dresselhaus, et al. Physical Review B 46 (19) 12723 (1992) https://doi.org/10.1103/PhysRevB.46.12723
New Horizons in Low-Dimensional Electron Systems
S. L. Di Vittorio, M. S. Dresselhaus and G. Dresselhaus Physics and Chemistry of Materials with Low-Dimensional Structures, New Horizons in Low-Dimensional Electron Systems 13 3 (1992) https://doi.org/10.1007/978-94-011-3190-2_1
Graphite Intercalation Compounds II
Natalíe A. W. Holzwarth Springer Series in Materials Science, Graphite Intercalation Compounds II 18 7 (1992) https://doi.org/10.1007/978-3-642-84479-9_2
Screening of charged impurities in graphite intercalation compounds
M. F. Lin and Kenneth W. -K. Shung Physical Review B 46 (19) 12656 (1992) https://doi.org/10.1103/PhysRevB.46.12656
Magnetotransport at the metal-insulator transition in fluorine-intercalated graphite fibers
S. L. di Vittorio, M. S. Dresselhaus, M. Endo and T. Nakajima Physical Review B 43 (15) 12304 (1991) https://doi.org/10.1103/PhysRevB.43.12304
The de Haas-van Alphen effect of SbF5-intercalated graphite
G Wang, P K Ummat and W R Datars Journal of Physics: Condensed Matter 3 (7) 787 (1991) https://doi.org/10.1088/0953-8984/3/7/003
Magnetic-field dependence of the hole-hole interaction in fluorine-intercalated graphite fibers
S. L. di Vittorio, M. S. Dresselhaus, M. Endo and T. Nakajima Physical Review B 43 (2) 1313 (1991) https://doi.org/10.1103/PhysRevB.43.1313
Optical determination of the charge transfer in graphite intercalation compounds with chromium and rhodium fluorides
K. Amine, A. Tressaud, P. Hagenmuller, et al. Materials Research Bulletin 25 (10) 1219 (1990) https://doi.org/10.1016/0025-5408(90)90077-F
Far-Infrared Magneto-Optical Investigation ofp-Black Phosphorus in Pulsed High Magnetic Fields
Shojiro Takeyama, Noboru Miura, Yuichi Akahama and Shoichi Endo Journal of the Physical Society of Japan 59 (7) 2400 (1990) https://doi.org/10.1143/JPSJ.59.2400
Electrochemical intercalation into graphite seen as an electrocapillary process
Ahmed Harrach and André Métrot Electrochimica Acta 34 (12) 1877 (1989) https://doi.org/10.1016/0013-4686(89)85075-3
Graphite and graphite intercalation compounds under pressure: Raman modes, optical reflectivity, and phase changes
K Syassen, R Sonnenschein, M Hanfland and H.J Beister Synthetic Metals 34 (1-3) 293 (1989) https://doi.org/10.1016/0379-6779(89)90400-1
Galvanomagnetic properties of intercalation compounds of acceptor-type graphite
N. B. Brandt, V. N. Davydov, V. A. Kul’bachinskii and O. M. Nikitina Soviet Journal of Low Temperature Physics 14 (4) 191 (1988) https://doi.org/10.1063/10.0031909
Semimetals - Graphite and its Compounds
Modern Problems in Condensed Matter Sciences, Semimetals - Graphite and its Compounds 20 449 (1988) https://doi.org/10.1016/B978-0-444-87049-0.50020-2
Simple model for the Hall effect inYBa2Cu3O7−δ
R. S. Markiewicz Physical Review B 38 (7) 5010 (1988) https://doi.org/10.1103/PhysRevB.38.5010
Magnetoresistance of low stage graphite acceptor compounds
V.N. Davydov and V.A. Koulbatchinski Solid State Communications 66 (7) 695 (1988) https://doi.org/10.1016/0038-1098(88)90986-6
Electron Transport in Low-Stage Graphite-ICl Intercalation Compounds
Yasumitsu Ohta, Kiyoshi Kawamura and Takuro Tsuzuku Journal of the Physical Society of Japan 57 (1) 196 (1988) https://doi.org/10.1143/JPSJ.57.196
Electronic properties of stage-3SbCl5-intercalated graphite
G. Wang, H. Zaleski, P. K. Ummat and W. R. Datars Physical Review B 37 (15) 9029 (1988) https://doi.org/10.1103/PhysRevB.37.9029
Optical dielectric function of high-stage potassium graphite intercalation compounds: Experiment and theory
M. H. Yang and P. C. Eklund Physical Review B 38 (5) 3505 (1988) https://doi.org/10.1103/PhysRevB.38.3505
The physics of ternary graphite intercalation compounds
S.A. Solin and H. Zabel Advances in Physics 37 (2) 87 (1988) https://doi.org/10.1080/00018738800101369
ESR Study of HNO3Intercalation Process of Graphite
Mitsuhiro Nakajima, Kiyoshi Kawamura and Takuro Tsuzuku Journal of the Physical Society of Japan 57 (5) 1572 (1988) https://doi.org/10.1143/JPSJ.57.1572
Potassium graphite under pressure: Optical reflectivity of superdense phases
R. Sonnenschein, M. Hanfland and K. Syassen Physical Review B 38 (5) 3152 (1988) https://doi.org/10.1103/PhysRevB.38.3152
Long-range interaction of a helium atom with intercalated graphite
Pawel Hawrylak and Milton W. Cole Physical Review B 35 (15) 8262 (1987) https://doi.org/10.1103/PhysRevB.35.8262
Galvanomagnetic properties of AsF5-intercalated graphite
W. Lang, A. Philipp and K. Seeger Journal of Materials Science 22 (1) 223 (1987) https://doi.org/10.1007/BF01160576
Graphite intercalation compounds electrochemistry as a model for synthetic metals
André Métrot Makromolekulare Chemie. Macromolecular Symposia 8 (1) 39 (1987) https://doi.org/10.1002/masy.19870080105
In situ optical and structural studies of H2 chemisorption in C8K
G. L. Doll and P. C. Eklund Journal of Materials Research 2 (5) 638 (1987) https://doi.org/10.1557/JMR.1987.0638
In situoptical-reflectance study ofH2physisorption inC24K
G. L. Doll and P. C. Eklund Physical Review B 36 (17) 9191 (1987) https://doi.org/10.1103/PhysRevB.36.9191
Solid State Physics
S.A. Safran Solid State Physics 40 183 (1987) https://doi.org/10.1016/S0081-1947(08)60692-X
Lifetime effects in low-stage intercalated graphite systems
Kenneth W. -K. Shung Physical Review B 34 (2) 1264 (1986) https://doi.org/10.1103/PhysRevB.34.1264
Orbital susceptibility of higher-stage graphite intercalation compounds
R. Saito and H. Kamimura Physical Review B 33 (10) 7218 (1986) https://doi.org/10.1103/PhysRevB.33.7218
Dielectric function and plasmon structure of stage-1 intercalated graphite
Kenneth W. -K. Shung Physical Review B 34 (2) 979 (1986) https://doi.org/10.1103/PhysRevB.34.979
C-axis conductivity of graphite intercalation compounds
R.S. Markiewicz Solid State Communications 57 (4) 237 (1986) https://doi.org/10.1016/0038-1098(86)90147-X
Intercalation in Layered Materials
P. C. Eklund, M. H. Yang and G. L. Doll NATO ASI Series, Intercalation in Layered Materials 148 257 (1986) https://doi.org/10.1007/978-1-4757-5556-5_20
Effect ofc-axis dispersion on the optical properties of acceptor-type graphite intercalation compounds
D. M. Hoffman, P. C. Eklund, R. E. Heinz, P. Hawrylak and K. R. Subbaswamy Physical Review B 31 (6) 3973 (1985) https://doi.org/10.1103/PhysRevB.31.3973
High Resolution13C NMR in K-Graphite Intercalation Compounds–C-Axis Charge Distribution
Yutaka Maniwa, Kiyoshi Kume, Hiroyoshi Suematsu and Sei-ichi Tanuma Journal of the Physical Society of Japan 54 (2) 666 (1985) https://doi.org/10.1143/JPSJ.54.666
Stage dependence of the electrical resistivity of graphite intercalation compounds
E McRae and J -F Mareche Journal of Physics C: Solid State Physics 18 (8) 1627 (1985) https://doi.org/10.1088/0022-3719/18/8/010
Quantum oscillations of the radio frequency surface impedance of SbCl5 graphite intercalation compounds
I. Sakamoto, I. Shiozaki, K. Yonemitsu and S. Tanuma Synthetic Metals 12 (1-2) 353 (1985) https://doi.org/10.1016/0379-6779(85)90134-1
Optical reflectance study of the electronic structure of acceptor-type graphite intercalation compounds
D. M. Hoffman, R. E. Heinz, G. L. Doll and P. C. Eklund Physical Review B 32 (2) 1278 (1985) https://doi.org/10.1103/PhysRevB.32.1278
Magnetic-breakdown coupling between orbits of a low-electron-density system
J. C. Soret, I. Rosenman, Ch. Simon and F. Batallan Physical Review B 32 (12) 8361 (1985) https://doi.org/10.1103/PhysRevB.32.8361
Theory of the g-Factor in Graphite Intercalation Compounds
Ko Sugihara, Keiko Matsubara and Takuro Tsuzuku Journal of the Physical Society of Japan 53 (2) 795 (1984) https://doi.org/10.1143/JPSJ.53.795
c-axis conductivity and thermoelectric power in graphite intercalation compounds
Ko Sugihara Physical Review B 29 (10) 5872 (1984) https://doi.org/10.1103/PhysRevB.29.5872
High pressure properties of graphite and its intercalation compounds
Roy Clarke and Ctirad Uher Advances in Physics 33 (5) 469 (1984) https://doi.org/10.1080/00018738400101691
Stage dependence of magnetic susceptibility of intercalated graphite
S. A. Safran Physical Review B 30 (1) 421 (1984) https://doi.org/10.1103/PhysRevB.30.421
Electronic structures of higher stage graphite intercalation compounds
Takahisa Ohno and Hiroshi Kamimura Physica B+C 117-118 611 (1983) https://doi.org/10.1016/0378-4363(83)90603-4
Lithium-intercalated graphite: Self-consistent electronic structure for stages one, two, and three
N. A. W. Holzwarth, Steven G. Louie and Sohrab Rabii Physical Review B 28 (2) 1013 (1983) https://doi.org/10.1103/PhysRevB.28.1013
Cyclotron resonance in SbCl5-GICs
I. Shiozaki, K. Yonemitsu, S. Tanuma and K. Koga Synthetic Metals 8 (1-2) 171 (1983) https://doi.org/10.1016/0379-6779(83)90029-2
Band Structures and Charge Distributions along the c-Axis of Higher Stage Graphite Intercalation Compounds
Takahisa Ohno and Hiroshi Kamimura Journal of the Physical Society of Japan 52 (1) 223 (1983) https://doi.org/10.1143/JPSJ.52.223
c-axis charge distribution in stage-3 and -4 graphite acceptor compounds
R. S. Markiewicz Physical Review B 28 (10) 6141 (1983) https://doi.org/10.1103/PhysRevB.28.6141
Physics of Narrow Gap Semiconductors
C. Rigaux and J. Blinowski Lecture Notes in Physics, Physics of Narrow Gap Semiconductors 152 352 (1982) https://doi.org/10.1007/3-540-11191-3_61
Self-consistent band structures of higher stage graphite intercalation compounds
T. Ohno, N. Shima and H. Kamimura Solid State Communications 44 (6) 761 (1982) https://doi.org/10.1016/0038-1098(82)90269-1
Charge Distribution among Graphite Layers in High-Stage Alkali-Graphite Intercalation Compounds
Shuji Shimamura and Akira Morita Journal of the Physical Society of Japan 51 (2) 502 (1982) https://doi.org/10.1143/JPSJ.51.502
Optical Reflectance Studies of Stage 1-4 Graphite-Sbcl5 Intercalation Compounds in the Range 0.2-10 eV
R. E. Heinz, G. Doll, P. Charron and P. C. Eklund MRS Proceedings 20 (1982) https://doi.org/10.1557/PROC-20-87
Low Field Galvanomagnetic Properties of Graphite Acceptor Compounds and their Relation to Trigonal Warping
Ko Sugihara MRS Proceedings 20 (1982) https://doi.org/10.1557/PROC-20-179
Electronic Transport Properties of Graphite Acceptor Compounds
Ian L. Spain and Kenneth J. Volin MRS Proceedings 20 (1982) https://doi.org/10.1557/PROC-20-173
Electronic Structure of Graphite Intercalation Compounds
N.A.W. Holzwarth, Steven G. Louie and Sohrab Rabii MRS Proceedings 20 (1982) https://doi.org/10.1557/PROC-20-107
Electronic and Lattice Modes of Graphite-Cocl2
C.W. Lowe, C. Nicolini and G. Dresselhaus MRS Proceedings 20 (1982) https://doi.org/10.1557/PROC-20-93
Electronic structure of a model stage-1 graphite acceptor intercalate
G Campagnoli and E Tosatti Journal of Physics C: Solid State Physics 15 (7) 1457 (1982) https://doi.org/10.1088/0022-3719/15/7/014
Optical Reflectance Studies of Stage 1-6 Graphite-Fecl3 Intercalation Compounds
D. S. Smith and P. C. Eklund MRS Proceedings 20 (1982) https://doi.org/10.1557/PROC-20-99
Shubnikov—de Haas measurements in alkali-metal—graphite intercalation compounds
M. Shayegan, M. S. Dresselhaus and G. Dresselhaus Physical Review B 25 (6) 4157 (1982) https://doi.org/10.1103/PhysRevB.25.4157
Physics of Intercalation Compounds
Sei-ichi Tanuma, Otofumi Takahashi and Yasuhiro Iye Springer Series in Solid-State Sciences, Physics of Intercalation Compounds 38 90 (1981) https://doi.org/10.1007/978-3-642-81774-8_12
Physics of Intercalation Compounds
S. A. Safran, N. A. W. Holzwarth and D. R. Hamann Springer Series in Solid-State Sciences, Physics of Intercalation Compounds 38 138 (1981) https://doi.org/10.1007/978-3-642-81774-8_19
Festkörperprobleme 21
Peter Pfluger and Hans-Joachim Güntherodt Advances in Solid State Physics, Festkörperprobleme 21 21 271 (1981) https://doi.org/10.1007/BFb0108608
Self-consistent charge densities, band structures, and staging energies of graphite intercalation compounds
S. A. Safran and D. R. Hamann Physical Review B 23 (2) 565 (1981) https://doi.org/10.1103/PhysRevB.23.565
Electronic Structure of Third-Stage Lithium Intercalated Graphite
N. A. W. Holzwarth, Steven G. Louie and Sohrab Rabii Physical Review Letters 47 (18) 1318 (1981) https://doi.org/10.1103/PhysRevLett.47.1318
Physics of Intercalation Compounds
Hiroshi Kamimura Springer Series in Solid-State Sciences, Physics of Intercalation Compounds 38 80 (1981) https://doi.org/10.1007/978-3-642-81774-8_11
The electronic structure of acceptor-type graphite intercalation compounds
J. Bok Physica B+C 105 (1-3) 491 (1981) https://doi.org/10.1016/0378-4363(81)90300-4
Optical reflection studies of the electronic properties of stages 2 – 5 graphite-SbCl5
P.C. Eklund, D.S. Smith and V.R.K. Murthy Synthetic Metals 3 (1-2) 111 (1981) https://doi.org/10.1016/0379-6779(81)90049-7
Intervalence transitions in graphite acceptor compounds
Nguyen Hy Hau, J. Blinowski, C. Rigaux, et al. Synthetic Metals 3 (1-2) 99 (1981) https://doi.org/10.1016/0379-6779(81)90048-5
Magnetothermal oscillations, Fermi surface, and band structure of lowest-stage nitric-acid—graphite intercalation compounds
Ch. Simon, F. Batallan, I. Rosenman and H. Fuzellier Physical Review B 23 (6) 2836 (1981) https://doi.org/10.1103/PhysRevB.23.2836
Quantum oscillatory effects and band structure in graphite intercalation compounds
F. Batallan, I. Rosenman and C. Simon Synthetic Metals 2 (3-4) 353 (1980) https://doi.org/10.1016/0379-6779(80)90064-8
Concentration dependence of optical reflectivity and 2γ-angular correlation distribution of positron annihilation in donor- and acceptor-intercalated graphite
P. Pfluger, K.-P. Ackermann, R. Lapka, et al. Synthetic Metals 2 (3-4) 285 (1980) https://doi.org/10.1016/0379-6779(80)90058-2
Band structure model and electrostatic effects in stages 3 and 4 of graphite acceptor compounds
J. Blinowski and C. Rigaux Synthetic Metals 2 (3-4) 297 (1980) https://doi.org/10.1016/0379-6779(80)90059-4