Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Some thermodynamical peculiarities at the Lifshitz topological transitions in trigonally warped AB-stacked bilayer graphene and graphite near K points

V. N. Davydov
Philosophical Magazine 101 (7) 867 (2021)
https://doi.org/10.1080/14786435.2020.1869341

The recurrent relations for the electronic band structure of the multilayer graphene

V. N. Davydov
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2220) 20180439 (2018)
https://doi.org/10.1098/rspa.2018.0439

Weak localization and interaction effects in acceptor graphite intercalation compounds

O. I. Prokopov, I. V. Ovsiienko, L. Yu. Matzui, et al.
Low Temperature Physics 43 (6) 703 (2017)
https://doi.org/10.1063/1.4985977

Chemical Functionalization of Carbon Nanomaterials

Suman Chowdhury, Ritwika Das, Palash Nath, Dirtha Sanyal and Debnarayan Jana
Chemical Functionalization of Carbon Nanomaterials 948 (2015)
https://doi.org/10.1201/b18724-45

Carbons for Electrochemical Energy Storage and Conversion Systems

Toshiaki Enoki
Advanced Materials and Technologies, Carbons for Electrochemical Energy Storage and Conversion Systems 20091238 221 (2009)
https://doi.org/10.1201/9781420055405-c6

Electronic properties and superconductivity of low-dimensional carbon structures

V. A. Kulbachinskiı̆
Low Temperature Physics 30 (11) 826 (2004)
https://doi.org/10.1063/1.1819856

Shubnikov-de haas effect and energy spectra of graphite-nitric acid intercalation compounds

V. A. Kulbachinskii, N. E. Sorokina, S. V. Kuvshinnikov and S. G. Ionov
Physics of the Solid State 45 (12) 2264 (2003)
https://doi.org/10.1134/1.1635495

Shubnikov-De Haas effect and angular dependent magnetoresistance oscillations in SbCl5-intercalated graphite

M. Baxendale, V.Z. Mordkovich and S. Yoshimura
Solid State Communications 107 (4) 165 (1998)
https://doi.org/10.1016/S0038-1098(98)00171-9

Theory of thea- andc-Axis Resistivity and Magnetoresistance in MoCl5Graphite Intercalation Compounds

Ko Sugihara, Keiko Matsubara, Itsuko S. Suzuki and Masatsugu Suzuki
Journal of the Physical Society of Japan 67 (12) 4169 (1998)
https://doi.org/10.1143/JPSJ.67.4169

Pressure dependence of the electronic structure in the stage-3 HgCl2 graphite intercalation compound studied via the de Haas-van alphen effect

Masahiro Takashita, Haruyoshi Aoki, Takehiko Matsumoto, et al.
Czechoslovak Journal of Physics 46 (S5) 2535 (1996)
https://doi.org/10.1007/BF02570254

Electronic properties of chloride acceptor graphite intercalation compounds with AuCl3

W.R. Datars, D. Marchesan and P.K. Ummat
Journal of Physics and Chemistry of Solids 57 (6-8) 791 (1996)
https://doi.org/10.1016/0022-3697(96)00351-4

Electronic states in the stage-3 mercury chloride graphite intercalation compound

D. Marchesan, T. R. Chien, G. Wang, P. K. Ummat and W. R. Datars
Physical Review B 52 (12) 9061 (1995)
https://doi.org/10.1103/PhysRevB.52.9061

Electronic Structures of Sodium-Hydride-Graphite Intercalation Compounds

Toshiaki Enoki, Noriaki Sakamoto, Keisuke Nakazawa, et al.
Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 245 (1) 7 (1994)
https://doi.org/10.1080/10587259408051658

Electronic structure and growth mechanism of carbon tubules

Riichiro Saito, Mitsutaka Fujita, G. Dresselhaus and M.S. Dresselhaus
Materials Science and Engineering: B 19 (1-2) 185 (1993)
https://doi.org/10.1016/0921-5107(93)90186-Q

c-axis electrical conductivity and thermoelectric power of sodium hydride–graphite ternary intercalation compounds

Toshiaki Enoki, Noriaki Sakamoto, Keisuke Nakazawa, et al.
Physical Review B 47 (16) 10662 (1993)
https://doi.org/10.1103/PhysRevB.47.10662

Electronic structure of double‐layer graphene tubules

Riichiro Saito, G. Dresselhaus and M. S. Dresselhaus
Journal of Applied Physics 73 (2) 494 (1993)
https://doi.org/10.1063/1.353358

Raman-scattering and transmission-electron-microscopy studies of fluorine-intercalated graphite fibersCxF (7.8≥x≥2.9)

A. M. Rao, A. W. P. Fung, S. L. di Vittorio, et al.
Physical Review B 45 (12) 6883 (1992)
https://doi.org/10.1103/PhysRevB.45.6883

Electron-spin-resonance study of fluorine-intercalated graphite fibers

S. L. di Vittorio, T. Enoki, M. S. Dresselhaus, et al.
Physical Review B 46 (19) 12723 (1992)
https://doi.org/10.1103/PhysRevB.46.12723

New Horizons in Low-Dimensional Electron Systems

S. L. Di Vittorio, M. S. Dresselhaus and G. Dresselhaus
Physics and Chemistry of Materials with Low-Dimensional Structures, New Horizons in Low-Dimensional Electron Systems 13 3 (1992)
https://doi.org/10.1007/978-94-011-3190-2_1

Magnetotransport at the metal-insulator transition in fluorine-intercalated graphite fibers

S. L. di Vittorio, M. S. Dresselhaus, M. Endo and T. Nakajima
Physical Review B 43 (15) 12304 (1991)
https://doi.org/10.1103/PhysRevB.43.12304

Magnetic-field dependence of the hole-hole interaction in fluorine-intercalated graphite fibers

S. L. di Vittorio, M. S. Dresselhaus, M. Endo and T. Nakajima
Physical Review B 43 (2) 1313 (1991)
https://doi.org/10.1103/PhysRevB.43.1313

Optical determination of the charge transfer in graphite intercalation compounds with chromium and rhodium fluorides

K. Amine, A. Tressaud, P. Hagenmuller, et al.
Materials Research Bulletin 25 (10) 1219 (1990)
https://doi.org/10.1016/0025-5408(90)90077-F

Far-Infrared Magneto-Optical Investigation ofp-Black Phosphorus in Pulsed High Magnetic Fields

Shojiro Takeyama, Noboru Miura, Yuichi Akahama and Shoichi Endo
Journal of the Physical Society of Japan 59 (7) 2400 (1990)
https://doi.org/10.1143/JPSJ.59.2400

Graphite and graphite intercalation compounds under pressure: Raman modes, optical reflectivity, and phase changes

K Syassen, R Sonnenschein, M Hanfland and H.J Beister
Synthetic Metals 34 (1-3) 293 (1989)
https://doi.org/10.1016/0379-6779(89)90400-1

Galvanomagnetic properties of intercalation compounds of acceptor-type graphite

N. B. Brandt, V. N. Davydov, V. A. Kul’bachinskii and O. M. Nikitina
Soviet Journal of Low Temperature Physics 14 (4) 191 (1988)
https://doi.org/10.1063/10.0031909

Electron Transport in Low-Stage Graphite-ICl Intercalation Compounds

Yasumitsu Ohta, Kiyoshi Kawamura and Takuro Tsuzuku
Journal of the Physical Society of Japan 57 (1) 196 (1988)
https://doi.org/10.1143/JPSJ.57.196

Optical dielectric function of high-stage potassium graphite intercalation compounds: Experiment and theory

M. H. Yang and P. C. Eklund
Physical Review B 38 (5) 3505 (1988)
https://doi.org/10.1103/PhysRevB.38.3505

ESR Study of HNO3Intercalation Process of Graphite

Mitsuhiro Nakajima, Kiyoshi Kawamura and Takuro Tsuzuku
Journal of the Physical Society of Japan 57 (5) 1572 (1988)
https://doi.org/10.1143/JPSJ.57.1572

Potassium graphite under pressure: Optical reflectivity of superdense phases

R. Sonnenschein, M. Hanfland and K. Syassen
Physical Review B 38 (5) 3152 (1988)
https://doi.org/10.1103/PhysRevB.38.3152

Galvanomagnetic properties of AsF5-intercalated graphite

W. Lang, A. Philipp and K. Seeger
Journal of Materials Science 22 (1) 223 (1987)
https://doi.org/10.1007/BF01160576

Graphite intercalation compounds electrochemistry as a model for synthetic metals

André Métrot
Makromolekulare Chemie. Macromolecular Symposia 8 (1) 39 (1987)
https://doi.org/10.1002/masy.19870080105

Effect ofc-axis dispersion on the optical properties of acceptor-type graphite intercalation compounds

D. M. Hoffman, P. C. Eklund, R. E. Heinz, P. Hawrylak and K. R. Subbaswamy
Physical Review B 31 (6) 3973 (1985)
https://doi.org/10.1103/PhysRevB.31.3973

High Resolution13C NMR in K-Graphite Intercalation Compounds–C-Axis Charge Distribution

Yutaka Maniwa, Kiyoshi Kume, Hiroyoshi Suematsu and Sei-ichi Tanuma
Journal of the Physical Society of Japan 54 (2) 666 (1985)
https://doi.org/10.1143/JPSJ.54.666

Stage dependence of the electrical resistivity of graphite intercalation compounds

E McRae and J -F Mareche
Journal of Physics C: Solid State Physics 18 (8) 1627 (1985)
https://doi.org/10.1088/0022-3719/18/8/010

Quantum oscillations of the radio frequency surface impedance of SbCl5 graphite intercalation compounds

I. Sakamoto, I. Shiozaki, K. Yonemitsu and S. Tanuma
Synthetic Metals 12 (1-2) 353 (1985)
https://doi.org/10.1016/0379-6779(85)90134-1

Optical reflectance study of the electronic structure of acceptor-type graphite intercalation compounds

D. M. Hoffman, R. E. Heinz, G. L. Doll and P. C. Eklund
Physical Review B 32 (2) 1278 (1985)
https://doi.org/10.1103/PhysRevB.32.1278

Magnetic-breakdown coupling between orbits of a low-electron-density system

J. C. Soret, I. Rosenman, Ch. Simon and F. Batallan
Physical Review B 32 (12) 8361 (1985)
https://doi.org/10.1103/PhysRevB.32.8361

Theory of the g-Factor in Graphite Intercalation Compounds

Ko Sugihara, Keiko Matsubara and Takuro Tsuzuku
Journal of the Physical Society of Japan 53 (2) 795 (1984)
https://doi.org/10.1143/JPSJ.53.795

Lithium-intercalated graphite: Self-consistent electronic structure for stages one, two, and three

N. A. W. Holzwarth, Steven G. Louie and Sohrab Rabii
Physical Review B 28 (2) 1013 (1983)
https://doi.org/10.1103/PhysRevB.28.1013

Band Structures and Charge Distributions along the c-Axis of Higher Stage Graphite Intercalation Compounds

Takahisa Ohno and Hiroshi Kamimura
Journal of the Physical Society of Japan 52 (1) 223 (1983)
https://doi.org/10.1143/JPSJ.52.223

Charge Distribution among Graphite Layers in High-Stage Alkali-Graphite Intercalation Compounds

Shuji Shimamura and Akira Morita
Journal of the Physical Society of Japan 51 (2) 502 (1982)
https://doi.org/10.1143/JPSJ.51.502

Optical Reflectance Studies of Stage 1-4 Graphite-Sbcl5 Intercalation Compounds in the Range 0.2-10 eV

R. E. Heinz, G. Doll, P. Charron and P. C. Eklund
MRS Proceedings 20 (1982)
https://doi.org/10.1557/PROC-20-87

Low Field Galvanomagnetic Properties of Graphite Acceptor Compounds and their Relation to Trigonal Warping

Ko Sugihara
MRS Proceedings 20 (1982)
https://doi.org/10.1557/PROC-20-179

Optical Reflectance Studies of Stage 1-6 Graphite-Fecl3 Intercalation Compounds

D. S. Smith and P. C. Eklund
MRS Proceedings 20 (1982)
https://doi.org/10.1557/PROC-20-99

Shubnikov—de Haas measurements in alkali-metal—graphite intercalation compounds

M. Shayegan, M. S. Dresselhaus and G. Dresselhaus
Physical Review B 25 (6) 4157 (1982)
https://doi.org/10.1103/PhysRevB.25.4157

Physics of Intercalation Compounds

Sei-ichi Tanuma, Otofumi Takahashi and Yasuhiro Iye
Springer Series in Solid-State Sciences, Physics of Intercalation Compounds 38 90 (1981)
https://doi.org/10.1007/978-3-642-81774-8_12

Physics of Intercalation Compounds

S. A. Safran, N. A. W. Holzwarth and D. R. Hamann
Springer Series in Solid-State Sciences, Physics of Intercalation Compounds 38 138 (1981)
https://doi.org/10.1007/978-3-642-81774-8_19

Festkörperprobleme 21

Peter Pfluger and Hans-Joachim Güntherodt
Advances in Solid State Physics, Festkörperprobleme 21 21 271 (1981)
https://doi.org/10.1007/BFb0108608

Self-consistent charge densities, band structures, and staging energies of graphite intercalation compounds

S. A. Safran and D. R. Hamann
Physical Review B 23 (2) 565 (1981)
https://doi.org/10.1103/PhysRevB.23.565

Magnetothermal oscillations, Fermi surface, and band structure of lowest-stage nitric-acid—graphite intercalation compounds

Ch. Simon, F. Batallan, I. Rosenman and H. Fuzellier
Physical Review B 23 (6) 2836 (1981)
https://doi.org/10.1103/PhysRevB.23.2836

Concentration dependence of optical reflectivity and 2γ-angular correlation distribution of positron annihilation in donor- and acceptor-intercalated graphite

P. Pfluger, K.-P. Ackermann, R. Lapka, et al.
Synthetic Metals 2 (3-4) 285 (1980)
https://doi.org/10.1016/0379-6779(80)90058-2