La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
J. Blinowski , Nguyen Hy Hau , C. Rigaux , J.P. Vieren , R. Le Toullec , G. Furdin , A. Hérold , J. Melin
J. Phys. France, 41 1 (1980) 47-58
Citations de cet article :
273 articles | Pages :
Optical reflectance study of the electronic structure of acceptor-type graphite intercalation compounds
D. M. Hoffman, R. E. Heinz, G. L. Doll and P. C. Eklund Physical Review B 32 (2) 1278 (1985) https://doi.org/10.1103/PhysRevB.32.1278
Stage dependence of the electrical resistivity of graphite intercalation compounds
E McRae and J -F Mareche Journal of Physics C: Solid State Physics 18 (8) 1627 (1985) https://doi.org/10.1088/0022-3719/18/8/010
Conduction Electron Spin Resonance in Graphite Intercalation Compounds
Ko Sugihara Journal of the Physical Society of Japan 53 (1) 393 (1984) https://doi.org/10.1143/JPSJ.53.393
NZ-equilibration and nucleon exchange in dissipative heavy-ion collisions
H. Freiesleben and J.V. Kratz Physics Reports 106 (1-2) 1 (1984) https://doi.org/10.1016/0370-1573(84)90092-9
Shubnikov–de Haas oscillations in synthetic metals based on graphite intercalation compounds
N. B. Brandt, S. V. Kuvshinnikov, S. G. Ionov and V. A. Mukhanov Soviet Journal of Low Temperature Physics 10 (7) 379 (1984) https://doi.org/10.1063/10.0031142
c-axis conductivity and thermoelectric power in graphite intercalation compounds
Ko Sugihara Physical Review B 29 (10) 5872 (1984) https://doi.org/10.1103/PhysRevB.29.5872
Theory of the g-Factor in Graphite Intercalation Compounds
Ko Sugihara, Keiko Matsubara and Takuro Tsuzuku Journal of the Physical Society of Japan 53 (2) 795 (1984) https://doi.org/10.1143/JPSJ.53.795
Shubnikov—de Haas effect in KHgx-graphite intercalation compounds
G. Timp, T. C. Chieu, P. D. Dresselhaus and G. Dresselhaus Physical Review B 29 (12) 6940 (1984) https://doi.org/10.1103/PhysRevB.29.6940
Theory of Pressure-Induced Staging Transitions in Graphite Intercalation Compounds
Hiroshi Miyazaki, Yoshio Kuramoto and Chuji Horie Journal of the Physical Society of Japan 53 (4) 1380 (1984) https://doi.org/10.1143/JPSJ.53.1380
de Haas-van Alphen effect of stage-1 SbCl5graphite
H Zaleski, P K Ummat and W R Datars Journal of Physics C: Solid State Physics 17 (18) 3167 (1984) https://doi.org/10.1088/0022-3719/17/18/008
High pressure properties of graphite and its intercalation compounds
Roy Clarke and Ctirad Uher Advances in Physics 33 (5) 469 (1984) https://doi.org/10.1080/00018738400101691
Stage dependence of magnetic susceptibility of intercalated graphite
S. A. Safran Physical Review B 30 (1) 421 (1984) https://doi.org/10.1103/PhysRevB.30.421
π-electron delocalization inpoly(p−phenylene),poly(p−phenylenesulfide), andpoly(p−phenyleneoxide)
G. Crecelius, J. Fink, J. J. Ritsko, et al. Physical Review B 28 (4) 1802 (1983) https://doi.org/10.1103/PhysRevB.28.1802
Application of High Magnetic Fields in Semiconductor Physics
I. Rosenman, F. Batallan, Ch. Simon and G. Furdin Lecture Notes in Physics, Application of High Magnetic Fields in Semiconductor Physics 177 159 (1983) https://doi.org/10.1007/3-540-11996-5_22
A summary of the recent work of French laboratories presented as a tribute to Prof. Mrozowski
A. Pacault and A. Marchand Carbon 21 (4) 367 (1983) https://doi.org/10.1016/0008-6223(83)90129-X
EXAFS and Near Edge Structure
S. M. Heald, H. A. Goldberg and I. L. Kalnin Springer Series in Chemical Physics, EXAFS and Near Edge Structure 27 141 (1983) https://doi.org/10.1007/978-3-642-50098-5_26
Ionic salt limit in graphite–fluoroarsenate intercalation compounds
J. W. Milliken and J. E. Fischer The Journal of Chemical Physics 78 (9) 5800 (1983) https://doi.org/10.1063/1.445423
Optical determination of the charge transfer in AsF5-graphite intercalation compounds
M. Saint Jean, Nguyen Hy Hau, C. Rigaux and G. Furdin Solid State Communications 46 (1) 55 (1983) https://doi.org/10.1016/0038-1098(83)90030-3
Mössbauer analysis of the acceptor site for the donated electrons in FeCl3-intercalated graphite compounds
S. E. Millman and G. Kirczenow Physical Review B 28 (9) 5019 (1983) https://doi.org/10.1103/PhysRevB.28.5019
In situ optical study of H2SO4-graphite intercalation compounds
M. Saint Jean, M. Menant, Nguyen Hy Hau, C. Rigaux and A. Metrot Synthetic Metals 8 (1-2) 189 (1983) https://doi.org/10.1016/0379-6779(83)90032-2
Thermoelectric power of graphite intercalation compounds
Ko Sugihara Physical Review B 28 (4) 2157 (1983) https://doi.org/10.1103/PhysRevB.28.2157
Variable charge transfer and band structure of graphite intercalation compounds: C8nAsF5
R.S. Markiewicz Solid State Communications 44 (6) 791 (1982) https://doi.org/10.1016/0038-1098(82)90275-7
Electronic and Lattice Modes of Graphite-Cocl2
C.W. Lowe, C. Nicolini and G. Dresselhaus MRS Proceedings 20 (1982) https://doi.org/10.1557/PROC-20-93
Optical Reflectance Studies of Stage 1-6 Graphite-Fecl3 Intercalation Compounds
D. S. Smith and P. C. Eklund MRS Proceedings 20 (1982) https://doi.org/10.1557/PROC-20-99
Physics of Narrow Gap Semiconductors
C. Rigaux and J. Blinowski Lecture Notes in Physics, Physics of Narrow Gap Semiconductors 152 352 (1982) https://doi.org/10.1007/3-540-11191-3_61
Charge transfer and islands in metal halides-graphite intercalation compounds: New evidence from x-ray diffraction of intercalated Mn Cl2
F. Baron, S. Flandrois, C. Hauw and J. Gaultier Solid State Communications 42 (11) 759 (1982) https://doi.org/10.1016/0038-1098(82)90001-1
Fermi Surface and Charge Density Waves in Second-Stage Graphite-Bromine Intercalation Compounds
F. Batallan, I. Rosenman, Ch. Simon and G. Furdin MRS Proceedings 20 (1982) https://doi.org/10.1557/PROC-20-129
Fermi Surfaces of Acceptor Intercalated Compounds: Evidence Frov Asf5-Graphite
R.S. Markiewicz, C. Lopatin and C. Zahopoulos MRS Proceedings 20 (1982) https://doi.org/10.1557/PROC-20-135
Low Field Galvanomagnetic Properties of Graphite Acceptor Compounds and their Relation to Trigonal Warping
Ko Sugihara MRS Proceedings 20 (1982) https://doi.org/10.1557/PROC-20-179
Light Scattering in Solids III
M. S. Dresselhaus and G. Dresselhaus Topics in Applied Physics, Light Scattering in Solids III 51 3 (1982) https://doi.org/10.1007/3540115137_2
Electronic Structure of Graphite Intercalation Compounds
N.A.W. Holzwarth, Steven G. Louie and Sohrab Rabii MRS Proceedings 20 (1982) https://doi.org/10.1557/PROC-20-107
Bond length, bond strength and electron lattice coupling in carbon based systems
L. Pietronero, S. Straessler and P. Horsch Molecular Crystals and Liquid Crystals 83 (1) 211 (1982) https://doi.org/10.1080/00268948208072170
19F NMR of antimony and arsenic pentafluoride-graphite derivatives
L. Facchini, J. Bouat, H. Sfihi, et al. Synthetic Metals 5 (1) 11 (1982) https://doi.org/10.1016/0379-6779(82)90041-8
Electronic properties of graphite: A unified theoretical study
R. C. Tatar and S. Rabii Physical Review B 25 (6) 4126 (1982) https://doi.org/10.1103/PhysRevB.25.4126
Electronic structure of a model stage-1 graphite acceptor intercalate
G Campagnoli and E Tosatti Journal of Physics C: Solid State Physics 15 (7) 1457 (1982) https://doi.org/10.1088/0022-3719/15/7/014
Thermoelectric Power of Graphite Acceptor Compounds
Ko Sugihara MRS Proceedings 20 (1982) https://doi.org/10.1557/PROC-20-157
Optical Reflectance Studies of Stage 1-4 Graphite-Sbcl5 Intercalation Compounds in the Range 0.2-10 eV
R. E. Heinz, G. Doll, P. Charron and P. C. Eklund MRS Proceedings 20 (1982) https://doi.org/10.1557/PROC-20-87
Electronic Transport Properties of Graphite Acceptor Compounds
Ian L. Spain and Kenneth J. Volin MRS Proceedings 20 (1982) https://doi.org/10.1557/PROC-20-173
Shubnikov—de Haas measurements in alkali-metal—graphite intercalation compounds
M. Shayegan, M. S. Dresselhaus and G. Dresselhaus Physical Review B 25 (6) 4157 (1982) https://doi.org/10.1103/PhysRevB.25.4157
Self-consistent band structures of higher stage graphite intercalation compounds
T. Ohno, N. Shima and H. Kamimura Solid State Communications 44 (6) 761 (1982) https://doi.org/10.1016/0038-1098(82)90269-1
Phenomenological model for the electronic structure of graphite intercalation compounds
G. Dresselhaus and S.Y. Leung Physica B+C 105 (1-3) 495 (1981) https://doi.org/10.1016/0378-4363(81)90301-6
Electron-phonon scattering and electrical conductivity of graphite intercalation compounds
L. Pietronero and S. Strässler Synthetic Metals 3 (3-4) 213 (1981) https://doi.org/10.1016/0379-6779(81)90011-4
Intervalence transitions in graphite acceptor compounds
Nguyen Hy Hau, J. Blinowski, C. Rigaux, et al. Synthetic Metals 3 (1-2) 99 (1981) https://doi.org/10.1016/0379-6779(81)90048-5
De haas-van alphen effect in stage 2 graphite-AsF5
J.E. Fischer, M.J. Moran, J.W. Milliken and A. Briggs Solid State Communications 39 (3) 439 (1981) https://doi.org/10.1016/0038-1098(81)90635-9
Mechanisms of electron-phonon scattering and resistivity in graphite intercalation compounds
L. Pietronero and S. Strässler Physical Review B 23 (12) 6793 (1981) https://doi.org/10.1103/PhysRevB.23.6793
Low frequency plasmon spectra in stage I and stage II FeCl3 intercalated graphite
Eugene J. Mele and John J. Ritsko Synthetic Metals 3 (1-2) 89 (1981) https://doi.org/10.1016/0379-6779(81)90047-3
Magnetothermal oscillations, Fermi surface, and band structure of lowest-stage nitric-acid—graphite intercalation compounds
Ch. Simon, F. Batallan, I. Rosenman and H. Fuzellier Physical Review B 23 (6) 2836 (1981) https://doi.org/10.1103/PhysRevB.23.2836
Electronic excitations in boron-doped graphite
E. J. Mele and J. J. Ritsko Physical Review B 24 (2) 1000 (1981) https://doi.org/10.1103/PhysRevB.24.1000
CarbonKVVAuger line shapes of graphite and stage-one cesium and lithium intercalated graphite
J. S. Murday, B. I. Dunlap, F. L. Hutson and P. Oelhafen Physical Review B 24 (8) 4764 (1981) https://doi.org/10.1103/PhysRevB.24.4764
Collective excitations of a model intercalate with inequivalent conducting layers
Birger Bergersen and Erio Tosatti Synthetic Metals 3 (1-2) 61 (1981) https://doi.org/10.1016/0379-6779(81)90043-6
The de Haas-van Alphen effect of graphite intercalation compounds with SbCl5 and HNO3
Otofumi Takahashi, Yasuhiro Iye and Sei-ichi Tanuma Solid State Communications 37 (11) 863 (1981) https://doi.org/10.1016/0038-1098(81)90498-1
Dimensionality of electronic structure and superconductivity of graphite intercalation compounds
S. Tanuma Physica B+C 105 (1-3) 486 (1981) https://doi.org/10.1016/0378-4363(81)90299-0
Physics of Intercalation Compounds
R. S. Markiewicz, J. S. Kasper, H. R. Hart and L. V. Interrante Springer Series in Solid-State Sciences, Physics of Intercalation Compounds 38 132 (1981) https://doi.org/10.1007/978-3-642-81774-8_18
Physics of Intercalation Compounds
G. Campagnoli and E. Tosatti Springer Series in Solid-State Sciences, Physics of Intercalation Compounds 38 144 (1981) https://doi.org/10.1007/978-3-642-81774-8_20
Intercalation compounds of graphite
M.S. Dresselhaus and G. Dresselhaus Advances in Physics 30 (2) 139 (1981) https://doi.org/10.1080/00018738100101367
High field 13C NMR in donor compounds of graphite (a model for the valence bandshape)
J. Conard, P. Lauginie, H. Estrade-Szwarckopf, et al. Physica B+C 105 (1-3) 285 (1981) https://doi.org/10.1016/0378-4363(81)90261-8
Self-consistent charge densities, band structures, and staging energies of graphite intercalation compounds
S. A. Safran and D. R. Hamann Physical Review B 23 (2) 565 (1981) https://doi.org/10.1103/PhysRevB.23.565
Bond-Length Change as a Tool to Determine Charge Transfer and Electron-Phonon Coupling in Graphite Intercalation Compounds
L. Pietronero and S. Strässler Physical Review Letters 47 (8) 593 (1981) https://doi.org/10.1103/PhysRevLett.47.593
Inelastic electron scattering spectroscopy of graphite-acceptor compounds
John J. Ritsko and Eugene J. Mele Synthetic Metals 3 (1-2) 73 (1981) https://doi.org/10.1016/0379-6779(81)90045-X
Festkörperprobleme 21
Sigfrid Strässler and Luciano Pietronero Advances in Solid State Physics, Festkörperprobleme 21 21 313 (1981) https://doi.org/10.1007/BFb0108609
Experimental tests of theoretical band structure of intercalation compounds of graphite
S.A. Solin Physica B+C 105 (1-3) 481 (1981) https://doi.org/10.1016/0378-4363(81)90298-9
Festkörperprobleme 21
Peter Pfluger and Hans-Joachim Güntherodt Advances in Solid State Physics, Festkörperprobleme 21 21 271 (1981) https://doi.org/10.1007/BFb0108608
Synthesis of graphite-SbCl5 and optical tests of its environmental stability
V.R.K. Murthy, D.S. Smith and P.C. Eklund Materials Science and Engineering 45 (1) 77 (1980) https://doi.org/10.1016/0025-5416(80)90072-5
Electronic structure of graphite-alkali metal compounds
G. Dresselhaus, S.Y. Leung, M. Shayegan and T.C. Chieu Synthetic Metals 2 (3-4) 321 (1980) https://doi.org/10.1016/0379-6779(80)90061-2
Band structure model and electrostatic effects in stages 3 and 4 of graphite acceptor compounds
J. Blinowski and C. Rigaux Synthetic Metals 2 (3-4) 297 (1980) https://doi.org/10.1016/0379-6779(80)90059-4
Quantum oscillatory phenomena in graphite intercalated with AsF5
R.S. Markiewicz, H.R. Hart, L.V. Interrante and J.S. Kasper Solid State Communications 35 (7) 513 (1980) https://doi.org/10.1016/0038-1098(80)90887-X
Cooperative effects and staging n graphite intercalation compounds
S.A. Safran Synthetic Metals 2 (1-2) 1 (1980) https://doi.org/10.1016/0379-6779(80)90026-0
Band structure model and electrostatic effects in third and fourth stages of graphite acceptor compounds
J. Blinowski and C. Rigaux Journal de Physique 41 (7) 667 (1980) https://doi.org/10.1051/jphys:01980004107066700
Graphite intercalation compounds: A simple model of Fermi surface and transport properties
N. A. W. Holzwarth Physical Review B 21 (8) 3665 (1980) https://doi.org/10.1103/PhysRevB.21.3665
Quantum oscillatory effects and band structure in graphite intercalation compounds
F. Batallan, I. Rosenman and C. Simon Synthetic Metals 2 (3-4) 353 (1980) https://doi.org/10.1016/0379-6779(80)90064-8
Concentration dependence of optical reflectivity and 2γ-angular correlation distribution of positron annihilation in donor- and acceptor-intercalated graphite
P. Pfluger, K.-P. Ackermann, R. Lapka, et al. Synthetic Metals 2 (3-4) 285 (1980) https://doi.org/10.1016/0379-6779(80)90058-2
Phenomenological electronic energy bands in graphite intercalation compounds
G. Dresselhaus and S.Y. Leung Solid State Communications 35 (11) 819 (1980) https://doi.org/10.1016/0038-1098(80)91031-5
Magneto-oscillations in AsF5-intercalated graphite
R.S. Markiewicz, H.R. Hart, L.V. Interrante and J.S. Kasper Synthetic Metals 2 (3-4) 331 (1980) https://doi.org/10.1016/0379-6779(80)90062-4
Pages :
201 à 273 sur 273 articles