Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Optical reflectance study of the electronic structure of acceptor-type graphite intercalation compounds

D. M. Hoffman, R. E. Heinz, G. L. Doll and P. C. Eklund
Physical Review B 32 (2) 1278 (1985)
https://doi.org/10.1103/PhysRevB.32.1278

Stage dependence of the electrical resistivity of graphite intercalation compounds

E McRae and J -F Mareche
Journal of Physics C: Solid State Physics 18 (8) 1627 (1985)
https://doi.org/10.1088/0022-3719/18/8/010

Conduction Electron Spin Resonance in Graphite Intercalation Compounds

Ko Sugihara
Journal of the Physical Society of Japan 53 (1) 393 (1984)
https://doi.org/10.1143/JPSJ.53.393

Shubnikov–de Haas oscillations in synthetic metals based on graphite intercalation compounds

N. B. Brandt, S. V. Kuvshinnikov, S. G. Ionov and V. A. Mukhanov
Soviet Journal of Low Temperature Physics 10 (7) 379 (1984)
https://doi.org/10.1063/10.0031142

Theory of the g-Factor in Graphite Intercalation Compounds

Ko Sugihara, Keiko Matsubara and Takuro Tsuzuku
Journal of the Physical Society of Japan 53 (2) 795 (1984)
https://doi.org/10.1143/JPSJ.53.795

Shubnikov—de Haas effect in KHgx-graphite intercalation compounds

G. Timp, T. C. Chieu, P. D. Dresselhaus and G. Dresselhaus
Physical Review B 29 (12) 6940 (1984)
https://doi.org/10.1103/PhysRevB.29.6940

Theory of Pressure-Induced Staging Transitions in Graphite Intercalation Compounds

Hiroshi Miyazaki, Yoshio Kuramoto and Chuji Horie
Journal of the Physical Society of Japan 53 (4) 1380 (1984)
https://doi.org/10.1143/JPSJ.53.1380

π-electron delocalization inpoly(p−phenylene),poly(p−phenylenesulfide), andpoly(p−phenyleneoxide)

G. Crecelius, J. Fink, J. J. Ritsko, et al.
Physical Review B 28 (4) 1802 (1983)
https://doi.org/10.1103/PhysRevB.28.1802

Application of High Magnetic Fields in Semiconductor Physics

I. Rosenman, F. Batallan, Ch. Simon and G. Furdin
Lecture Notes in Physics, Application of High Magnetic Fields in Semiconductor Physics 177 159 (1983)
https://doi.org/10.1007/3-540-11996-5_22

Ionic salt limit in graphite–fluoroarsenate intercalation compounds

J. W. Milliken and J. E. Fischer
The Journal of Chemical Physics 78 (9) 5800 (1983)
https://doi.org/10.1063/1.445423

Optical determination of the charge transfer in AsF5-graphite intercalation compounds

M. Saint Jean, Nguyen Hy Hau, C. Rigaux and G. Furdin
Solid State Communications 46 (1) 55 (1983)
https://doi.org/10.1016/0038-1098(83)90030-3

Mössbauer analysis of the acceptor site for the donated electrons in FeCl3-intercalated graphite compounds

S. E. Millman and G. Kirczenow
Physical Review B 28 (9) 5019 (1983)
https://doi.org/10.1103/PhysRevB.28.5019

Optical Reflectance Studies of Stage 1-6 Graphite-Fecl3 Intercalation Compounds

D. S. Smith and P. C. Eklund
MRS Proceedings 20 (1982)
https://doi.org/10.1557/PROC-20-99

Charge transfer and islands in metal halides-graphite intercalation compounds: New evidence from x-ray diffraction of intercalated Mn Cl2

F. Baron, S. Flandrois, C. Hauw and J. Gaultier
Solid State Communications 42 (11) 759 (1982)
https://doi.org/10.1016/0038-1098(82)90001-1

Fermi Surface and Charge Density Waves in Second-Stage Graphite-Bromine Intercalation Compounds

F. Batallan, I. Rosenman, Ch. Simon and G. Furdin
MRS Proceedings 20 (1982)
https://doi.org/10.1557/PROC-20-129

Fermi Surfaces of Acceptor Intercalated Compounds: Evidence Frov Asf5-Graphite

R.S. Markiewicz, C. Lopatin and C. Zahopoulos
MRS Proceedings 20 (1982)
https://doi.org/10.1557/PROC-20-135

Low Field Galvanomagnetic Properties of Graphite Acceptor Compounds and their Relation to Trigonal Warping

Ko Sugihara
MRS Proceedings 20 (1982)
https://doi.org/10.1557/PROC-20-179

Bond length, bond strength and electron lattice coupling in carbon based systems

L. Pietronero, S. Straessler and P. Horsch
Molecular Crystals and Liquid Crystals 83 (1) 211 (1982)
https://doi.org/10.1080/00268948208072170

Optical Reflectance Studies of Stage 1-4 Graphite-Sbcl5 Intercalation Compounds in the Range 0.2-10 eV

R. E. Heinz, G. Doll, P. Charron and P. C. Eklund
MRS Proceedings 20 (1982)
https://doi.org/10.1557/PROC-20-87

Shubnikov—de Haas measurements in alkali-metal—graphite intercalation compounds

M. Shayegan, M. S. Dresselhaus and G. Dresselhaus
Physical Review B 25 (6) 4157 (1982)
https://doi.org/10.1103/PhysRevB.25.4157

Mechanisms of electron-phonon scattering and resistivity in graphite intercalation compounds

L. Pietronero and S. Strässler
Physical Review B 23 (12) 6793 (1981)
https://doi.org/10.1103/PhysRevB.23.6793

Magnetothermal oscillations, Fermi surface, and band structure of lowest-stage nitric-acid—graphite intercalation compounds

Ch. Simon, F. Batallan, I. Rosenman and H. Fuzellier
Physical Review B 23 (6) 2836 (1981)
https://doi.org/10.1103/PhysRevB.23.2836

CarbonKVVAuger line shapes of graphite and stage-one cesium and lithium intercalated graphite

J. S. Murday, B. I. Dunlap, F. L. Hutson and P. Oelhafen
Physical Review B 24 (8) 4764 (1981)
https://doi.org/10.1103/PhysRevB.24.4764

The de Haas-van Alphen effect of graphite intercalation compounds with SbCl5 and HNO3

Otofumi Takahashi, Yasuhiro Iye and Sei-ichi Tanuma
Solid State Communications 37 (11) 863 (1981)
https://doi.org/10.1016/0038-1098(81)90498-1

Physics of Intercalation Compounds

R. S. Markiewicz, J. S. Kasper, H. R. Hart and L. V. Interrante
Springer Series in Solid-State Sciences, Physics of Intercalation Compounds 38 132 (1981)
https://doi.org/10.1007/978-3-642-81774-8_18

Self-consistent charge densities, band structures, and staging energies of graphite intercalation compounds

S. A. Safran and D. R. Hamann
Physical Review B 23 (2) 565 (1981)
https://doi.org/10.1103/PhysRevB.23.565

Bond-Length Change as a Tool to Determine Charge Transfer and Electron-Phonon Coupling in Graphite Intercalation Compounds

L. Pietronero and S. Strässler
Physical Review Letters 47 (8) 593 (1981)
https://doi.org/10.1103/PhysRevLett.47.593

Festkörperprobleme 21

Sigfrid Strässler and Luciano Pietronero
Advances in Solid State Physics, Festkörperprobleme 21 21 313 (1981)
https://doi.org/10.1007/BFb0108609

Festkörperprobleme 21

Peter Pfluger and Hans-Joachim Güntherodt
Advances in Solid State Physics, Festkörperprobleme 21 21 271 (1981)
https://doi.org/10.1007/BFb0108608

Concentration dependence of optical reflectivity and 2γ-angular correlation distribution of positron annihilation in donor- and acceptor-intercalated graphite

P. Pfluger, K.-P. Ackermann, R. Lapka, et al.
Synthetic Metals 2 (3-4) 285 (1980)
https://doi.org/10.1016/0379-6779(80)90058-2