Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Study of the Mossbauer effect of the ion Fe/sup 2+/ of trigonal symmetry in the compounds of the type (Fe,M)/sub 2/Mo/sub 3/O/sub 8/(M=Mg,Zn,Mn,Co,Ni) and magnetic properties of (Fe,Zn)/sub 2/Mo/sub 3/O/sub 8/
Étude par effet Mössbauer de l'ion Fe2+ en symétrie trigonale dans les composés du type (Fe, M)2Mo3O8 (M = Mg, Zn, Mn, Co, Ni) et propriétés magnétiques de (Fe, Zn) 2Mo3O8

J. Phys. France, 33 5-6 (1972) 549-564
DOI: https://doi.org/10.1051/jphys:01972003305-6054900

Crystal structure, spin flop transition, and magnetoelectric effect in the honeycomb-lattice frustrated Fe-doped Ni2Mo3O8 antiferromagnets

Zhipeng Yu, Hao Ding, Kun Zhai, Congpu Mu, Anmin Nie, Junzhuang Cong, Junquan Huang, Houjian Zhou, Qingkai Wang, Fusheng Wen, Jianyong Xiang, Bochong Wang, Tianyu Xue, Zhongming Zeng and Zhongyuan Liu
Physical Review B 109 (2) (2024)
https://doi.org/10.1103/PhysRevB.109.024442

Optical magnetoelectric effect in the polar honeycomb antiferromagnet Fe2Mo3O8

K. V. Vasin, A. Strinić, F. Schilberth, S. Reschke, L. Prodan, V. Tsurkan, A. R. Nurmukhametov, M. V. Eremin, I. Kézsmárki and J. Deisenhofer
Physical Review B 110 (5) (2024)
https://doi.org/10.1103/PhysRevB.110.054401

Antiferromagnetic to Ferrimagnetic Phase Transition and Possible Phase Coexistence in Polar Magnets (Fe1–xMnx)2Mo3O8 (0 ≤ x ≤ 1)

Yuting Chang, Lei Gao, Yunlong Xie, et al.
ACS Applied Materials & Interfaces 15 (18) 22204 (2023)
https://doi.org/10.1021/acsami.3c00518

Thermodynamic determination of the equilibrium first-order phase-transition line hidden by hysteresis in a phase diagram

Keisuke Matsuura, Yo Nishizawa, Markus Kriener, et al.
Scientific Reports 13 (1) (2023)
https://doi.org/10.1038/s41598-023-33816-6

Fluctuation-enhanced phonon magnetic moments in a polar antiferromagnet

Fangliang Wu, Song Bao, Jing Zhou, Yunlong Wang, Jian Sun, Jinsheng Wen, Yuan Wan and Qi Zhang
Nature Physics 19 (12) 1868 (2023)
https://doi.org/10.1038/s41567-023-02210-4

Low-temperature hysteresis broadening emerging from domain-wall creep dynamics in a two-phase competing system

Keisuke Matsuura, Yo Nishizawa, Yuto Kinoshita, Takashi Kurumaji, Atsushi Miyake, Hiroshi Oike, Masashi Tokunaga, Yoshinori Tokura and Fumitaka Kagawa
Communications Materials 4 (1) (2023)
https://doi.org/10.1038/s43246-023-00399-8

Direct observation of topological magnon polarons in a multiferroic material

Song Bao, Zhao-Long Gu, Yanyan Shangguan, Zhentao Huang, Junbo Liao, Xiaoxue Zhao, Bo Zhang, Zhao-Yang Dong, Wei Wang, Ryoichi Kajimoto, Mitsutaka Nakamura, Tom Fennell, Shun-Li Yu, Jian-Xin Li and Jinsheng Wen
Nature Communications 14 (1) (2023)
https://doi.org/10.1038/s41467-023-41791-9

Magnetization reversal through an antiferromagnetic state

Somnath Ghara, Evgenii Barts, Kirill Vasin, Dmytro Kamenskyi, Lilian Prodan, Vladimir Tsurkan, István Kézsmárki, Maxim Mostovoy and Joachim Deisenhofer
Nature Communications 14 (1) (2023)
https://doi.org/10.1038/s41467-023-40722-y

Fine Structure of Fe2+ Multiplets, Magnetic Anisotropy, and Interrelation between Magnetic and Electric Structures in Fe2Mo3O8

M. V. Eremin, K. V. Vasin and A. R. Nurmukhametov
Journal of Experimental and Theoretical Physics 137 (4) 506 (2023)
https://doi.org/10.1134/S106377612310014X

Tuning magnetic properties of polar magnets (Mn1−xCox)2Mo3O8 (0 ≤ x ≤ 1) with interacted magnetic sublattices

Yuting Chang, Bin You, Yunlong Xie, et al.
Applied Physics Letters 123 (10) (2023)
https://doi.org/10.1063/5.0163761

Confirming the trilinear form of the optical magnetoelectric effect in the polar honeycomb antiferromagnet Co2Mo3O8

S. Reschke, D. G. Farkas, A. Strinić, et al.
npj Quantum Materials 7 (1) (2022)
https://doi.org/10.1038/s41535-021-00417-3

Spectroscopic and first principle DFT+eDMFT study of complex structural, electronic, and vibrational properties of M2Mo3O8 ( M=Fe , Mn) polar magnets

T. N. Stanislavchuk, G. L. Pascut, A. P. Litvinchuk, et al.
Physical Review B 102 (11) (2020)
https://doi.org/10.1103/PhysRevB.102.115139

Thermal Hall Effect, Spin Nernst Effect, and Spin Density Induced by a Thermal Gradient in Collinear Ferrimagnets from Magnon–Phonon Interaction

Sungjoon Park, Naoto Nagaosa and Bohm-Jung Yang
Nano Letters 20 (4) 2741 (2020)
https://doi.org/10.1021/acs.nanolett.0c00363

Magnetic anisotropy and exchange paths for octahedrally and tetrahedrally coordinated Mn2+ ions in the honeycomb multiferroic Mn2Mo3O8

D. Szaller, K. Szász, S. Bordács, et al.
Physical Review B 102 (14) (2020)
https://doi.org/10.1103/PhysRevB.102.144410

Ordering of Fe and Zn Ions and the Magnetic Properties of FeZnMo3O8

S. V. Streltsov, D.-J. Huang, I. V. Solovyev and D. I. Khomskii
JETP Letters 109 (12) 786 (2019)
https://doi.org/10.1134/S0021364019120026

Picosecond Creation of Switchable Optomagnets from a Polar Antiferromagnet with Giant Photoinduced Kerr Rotations

Y. M. Sheu, Y. M. Chang, C. P. Chang, et al.
Physical Review X 9 (3) (2019)
https://doi.org/10.1103/PhysRevX.9.031038

Ni2Mo3O8 : Complex antiferromagnetic order on a honeycomb lattice

Jennifer R. Morey, Allen Scheie, John P. Sheckelton, Craig M. Brown and Tyrel M. McQueen
Physical Review Materials 3 (1) (2019)
https://doi.org/10.1103/PhysRevMaterials.3.014410

Imaging antiferromagnetic antiphase domain boundaries using magnetic Bragg diffraction phase contrast

Min Gyu Kim, Hu Miao, Bin Gao, et al.
Nature Communications 9 (1) (2018)
https://doi.org/10.1038/s41467-018-07350-3

Diagonal magnetoelectric susceptibility and effect of Fe doping in the polar ferrimagnet Mn2Mo3O8

T. Kurumaji, S. Ishiwata and Y. Tokura
Physical Review B 95 (4) (2017)
https://doi.org/10.1103/PhysRevB.95.045142

Unveiling hidden ferrimagnetism and giant magnetoelectricity in polar magnet Fe2Mo3O8

Yazhong Wang, Gheorghe L. Pascut, Bin Gao, et al.
Scientific Reports 5 (1) (2015)
https://doi.org/10.1038/srep12268

Doping-Tunable Ferrimagnetic Phase with Large Linear Magnetoelectric Effect in a Polar MagnetFe2Mo3O8

T. Kurumaji, S. Ishiwata and Y. Tokura
Physical Review X 5 (3) (2015)
https://doi.org/10.1103/PhysRevX.5.031034

Structural refinement of T2Mo3O8 (T=Mg, Co, Zn and Mn) and anomalous valence of trinuclear molybdenum clusters in Mn2Mo3O8

Hideki Abe, Akira Sato, Naohito Tsujii, Takao Furubayashi and Masahiko Shimoda
Journal of Solid State Chemistry 183 (2) 379 (2010)
https://doi.org/10.1016/j.jssc.2009.11.024

Carbothermal synthesis, spectral and magnetic characterization and Li-cyclability of the Mo-cluster compounds, LiYMo3O8 and Mn2Mo3O8

B. Das, M.V. Reddy, C. Krishnamoorthi, et al.
Electrochimica Acta 54 (12) 3360 (2009)
https://doi.org/10.1016/j.electacta.2008.12.049

Darstellung von Co2‐xZnxMo3O8‐Einkristallen mit definierter Zusammensetzung durch Chemischen Transport

Udo Steiner, Werner Reichelt, Sofia Daminova and Enrico Langer
Zeitschrift für anorganische und allgemeine Chemie 631 (2-3) 364 (2005)
https://doi.org/10.1002/zaac.200400402

Mössbauer spectral evidence for next-nearest neighbor interactions within the alluaudite structure of Na1−xLixMnFe2(PO4)3

Raphaël P. Hermann, Frédéric Hatert, André-Mathieu Fransolet, Gary J. Long and Fernande Grandjean
Solid State Sciences 4 (4) 507 (2002)
https://doi.org/10.1016/S1293-2558(02)01278-5

Dynamical Jahn-Teller coupling of Fe2+ in the cluster approach applied to the Mössbauer quadrupole data of 57Fe doped K2ZnF4 and Ba2ZnF6

A. Ducouret-Cereze and F. Varret
Journal de Physique 49 (4) 661 (1988)
https://doi.org/10.1051/jphys:01988004904066100

Antiferromagnetic ruthenium (III) (abstract)

Richard L. Carlin, Ramon Burriel, K. R. Seddon, G. Mennenga and L. J. de Jongh
Journal of Applied Physics 55 (6) 2345 (1984)
https://doi.org/10.1063/1.333658

Mise en évidence d'un échange électronique entre Fe2+ ET Fe3+ dans les oxydes rhomboédriques AFe2O4 par spectroscopie mossbauer DU57Fe

R. Gerardin and O. Evrard
Journal of Physics and Chemistry of Solids 44 (5) 423 (1983)
https://doi.org/10.1016/0022-3697(83)90070-7

Part B: Spinels, Fe Oxides, and Fe-Me-O Compounds

R. Lefever
Landolt-Börnstein - Group III Condensed Matter, Part B: Spinels, Fe Oxides, and Fe-Me-O Compounds 12b 51 (1980)
https://doi.org/10.1007/10201640_10

Part B: Spinels, Fe Oxides, and Fe-Me-O Compounds

R. Lefever
Landolt-Börnstein - Group III Condensed Matter, Part B: Spinels, Fe Oxides, and Fe-Me-O Compounds 12b 39 (1980)
https://doi.org/10.1007/10201640_9

Studies of potassium ferrites. IV. Mössbauer effect and conductivity studies of mixed FeGa and FeAl compounds of formula K1+xM11O17: Electron hopping and oxidation at room temperature

Arthur T. Howe and Geoffrey J. Dudley
Journal of Solid State Chemistry 30 (2) 157 (1979)
https://doi.org/10.1016/0022-4596(79)90097-5

Determination of coordination site and oxidation states of iron in sodium β-alumina through the use of Mössbauer, absorption, and emission spectroscopy, and magnetic susceptibility

J.R. Akridge, B. Srour, C. Meyer, Y. Gros and J.H. Kennedy
Journal of Solid State Chemistry 25 (2) 169 (1978)
https://doi.org/10.1016/0022-4596(78)90100-7

Band model describing the magnetic properties of Fe2−xMxP1−yAsy type compounds with hexagonal structure

M. Wautelet, A. Gerard and F. Grandjean
Journal of Magnetism and Magnetic Materials 5 (1) 78 (1977)
https://doi.org/10.1016/0304-8853(77)90199-8

Mössbauer effect and x-ray studies of the phase transition in iron hexammine salts

L. Asch, G. K. Shenoy, J. M. Friedt, J. P. Adloff and R. Kleinberger
The Journal of Chemical Physics 62 (6) 2335 (1975)
https://doi.org/10.1063/1.430759