Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Can Dynamic Helical Polymers be Reduced to Linear Chains of Spins? Non-Local Effects from Polymer Self-Avoidance

Keerti Chauhan, Marcus Müller and Kostas Ch Daoulas
Macromolecules 58 (11) 5408 (2025)
https://doi.org/10.1021/acs.macromol.4c03197

Conformations of Ring Polystyrenes in Semidilute Solutions and in Linear Polymer Matrices Studied by SANS

Takuro Iwamoto, Yuya Doi, Keita Kinoshita, et al.
Macromolecules 51 (17) 6836 (2018)
https://doi.org/10.1021/acs.macromol.8b00934

Scattering from multicomponent charged ramified polymeric networks of arbitrary topology

N. Ghaouar, M. Benhamou and A. Gharbi
Physica A: Statistical Mechanics and its Applications 359 267 (2006)
https://doi.org/10.1016/j.physa.2005.05.093

Swelling behavior of responsive amphiphilic gels

Elena Jarkova, Nam-Kyung Lee and Thomas A. Vilgis
The Journal of Chemical Physics 119 (6) 3541 (2003)
https://doi.org/10.1063/1.1588999

Comments on the Scaling Behavior of Flexible Polyelectrolytes within the Debye−Hückel Approximation

Magnus Ullner
The Journal of Physical Chemistry B 107 (32) 8097 (2003)
https://doi.org/10.1021/jp027381i

Improved Gaussian self-consistent method—applications to homopolymers with different architectures in dilute solution

Edward G. Timoshenko and Yuri A. Kuznetsov
The Journal of Chemical Physics 117 (11) 5404 (2002)
https://doi.org/10.1063/1.1500357

Analysis of stability of macromolecular clusters in dilute heteropolymer solutions

E. G. Timoshenko and Yu. A. Kuznetsov
The Journal of Chemical Physics 112 (18) 8163 (2000)
https://doi.org/10.1063/1.481417

Glass transition of an amphiphilic random copolymer and relation to the Ising model of spin-glass

A Moskalenko, Yu. A Kuznetsov and K. A Dawson
Europhysics Letters (EPL) 40 (2) 135 (1997)
https://doi.org/10.1209/epl/i1997-00435-1

A nonequilibrium approach for random amphiphilic copolymer model

E. G. Timoshenko, Yu. A. Kuznetsov and K. A. Dawson
Journal of Statistical Physics 89 (1-2) 347 (1997)
https://doi.org/10.1007/BF02770769

A Numerical Study of Polyampholyte Configuration

D. Bratko and A. K. Chakraborty
The Journal of Physical Chemistry 100 (4) 1164 (1996)
https://doi.org/10.1021/jp951506k

An improved perturbation approach to the 2D Edwards polymer: Corrections to scaling

S. R. Shannon, T. C. Choy and R. J. Fleming
The Journal of Chemical Physics 105 (19) 8951 (1996)
https://doi.org/10.1063/1.472625

A simple derivation of the exponent γ for Gaussian chains with excluded volume

Andrzej Kloczkowski, James E. Mark and Burak Erman
Macromolecular Theory and Simulations 4 (2) 245 (1995)
https://doi.org/10.1002/mats.1995.040040202

Polymer chains with excluded volume: Critical exponents from free energy optimization

Giuseppe Allegra and Emanuele Colombo
The Journal of Chemical Physics 101 (5) 4268 (1994)
https://doi.org/10.1063/1.467477

Random walks with short-range interaction and mean-field behavior

Sergio Caracciolo, Giorgo Parisi and Andrea Pelissetto
Journal of Statistical Physics 77 (3-4) 519 (1994)
https://doi.org/10.1007/BF02179448

A mean field approach to the structure of polyelectrolytes

D. Bratko and K. A. Dawson
The Journal of Chemical Physics 99 (7) 5352 (1993)
https://doi.org/10.1063/1.465979

The configurational free energy of a polymer chain

Fabio Ganazzoli, Giuseppe Allegra, Emanuele Colombo and Mario De Vitis
Macromolecular Theory and Simulations 1 (5) 299 (1992)
https://doi.org/10.1002/mats.1992.040010504

Polymers with long-range self-repulsion: a variational approach

Jean-P Bouchaud, M Mezard, G Parisi and J S Yedidia
Journal of Physics A: Mathematical and General 24 (17) L1025 (1991)
https://doi.org/10.1088/0305-4470/24/17/011

Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications

Jean-Philippe Bouchaud and Antoine Georges
Physics Reports 195 (4-5) 127 (1990)
https://doi.org/10.1016/0370-1573(90)90099-N

The excluded-volume expansion in polymer chains: Evaluation of the Flory exponent in the Gaussian approximation

Giuseppe Allegra and Fabio Ganazzoli
The Journal of Chemical Physics 87 (3) 1817 (1987)
https://doi.org/10.1063/1.453194

Dynamical properties of polymer solutions and perturbation theory near four dimensions

J. L. Alessandrini and A. I. Pesci
Physical Review A 30 (1) 532 (1984)
https://doi.org/10.1103/PhysRevA.30.532

Correction-to-scaling exponents and amplitudes for the correlation length of linear polymers in two dimensions

Z V Djordjevic, I Majid, H E Stanley and R J Dos Santos
Journal of Physics A: Mathematical and General 16 (14) L519 (1983)
https://doi.org/10.1088/0305-4470/16/14/006

Mechanischer Scherabbau von Polymeren in Lösung mittels turbulenter Strömung, 2. Die Abhängigkeit der Abbaugeschwindigkeit von der Polymergesamtkonzentration in guten Lösungsmitteln

Hans Georg Müller, Joachim Klein and Adelheid Rottloff
Die Makromolekulare Chemie 182 (2) 529 (1981)
https://doi.org/10.1002/macp.1981.021820220

Configurational properties of dilute polymer solutions, dimensionality and perturbation theory

M K Kosmas
Journal of Physics A: Mathematical and General 14 (4) 931 (1981)
https://doi.org/10.1088/0305-4470/14/4/021

Configurational properties of self-interacting linear polymer chains in a three-dimensional continuum. I. End-to-end probability and molecular span

C A Croxton
Journal of Physics A: Mathematical and General 12 (12) 2475 (1979)
https://doi.org/10.1088/0305-4470/12/12/025

Some problems of the statistical physics of polymer chains with volume interaction

I. M. Lifshitz, A. Yu. Grosberg and A. R. Khokhlov
Reviews of Modern Physics 50 (3) 683 (1978)
https://doi.org/10.1103/RevModPhys.50.683

Self‐consistent field theories of the polymer excluded volume problem. IV. The linear polymer

Marios K. Kosmas and Karl F. Freed
The Journal of Chemical Physics 68 (11) 4878 (1978)
https://doi.org/10.1063/1.435643

Stochastic Processes in Nonequilibrium Systems

Eugene P. Gross
Lecture Notes in Physics, Stochastic Processes in Nonequilibrium Systems 84 300 (1978)
https://doi.org/10.1007/BFb0016722

Distribution Functions of Polymers with and without Interactions. I. The Distribution Function of the Square Distance of the Center of Mass from One Fixed End of a Polymer Chain

Takao Minato and Akira Hatano
Polymer Journal 9 (3) 239 (1977)
https://doi.org/10.1295/polymj.9.239

Distribution Function of Polymers with and without Interactions. II. The Distribution Function of the Square Radius of Gyration of a Ring Chain

Takao Minato
Polymer Journal 9 (5) 479 (1977)
https://doi.org/10.1295/polymj.9.479

Determination of the conformation of polyelectrolytes in solution by small‐angle neutron elastic scattering

Michel Moan, Claude Wolff, Jean‐Pierre Cotton and Raymond Ober
Journal of Polymer Science: Polymer Symposia 61 (1) 1 (1977)
https://doi.org/10.1002/polc.5070610103

Three-Body Intrachain Collisions in a Single Polymer Chain

Tomo-o Oyama and Yoshitsugu Oono
Journal of the Physical Society of Japan 42 (4) 1348 (1977)
https://doi.org/10.1143/JPSJ.42.1348

Monte Carlo studies of the excluded volume problem for polymer chains in the continuum. I. Use of inversely restricted sampling techniques

N C Smith and R J Fleming
Journal of Physics A: Mathematical and General 8 (6) 929 (1975)
https://doi.org/10.1088/0305-4470/8/6/012

Self-consistent field theories of the polymer excluded volume problem. III. A self-consistent solution

H. P. Gillis and Karl F. Freed
The Journal of Chemical Physics 63 (2) 852 (1975)
https://doi.org/10.1063/1.431366

Study of the conformational rigidity of polyelectrolytes by elastic neutron scattering: 2. Molecular dimensions and conformation of poly(methacrylic acid)

Michel Moan, Claude Wolff and Raymond Ober
Polymer 16 (11) 781 (1975)
https://doi.org/10.1016/0032-3861(75)90106-8

Experimental Determinations of the Excluded-Volume Exponent in Different Environments

J. P. Cotton, D. Decker, B. Farnoux, et al.
Physical Review Letters 32 (21) 1170 (1974)
https://doi.org/10.1103/PhysRevLett.32.1170