La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
F. Ducastelle , R. Caudron , P. Costa
J. Phys. France, 31 1 (1970) 57-64
Citations de cet article :
89 articles
Dopant binding with vacancies and helium in metal hydrides
Amy Kaczmarowski, Clark Snow, Stephen Foiles, Corbett Battaile and Dane Morgan Journal of Nuclear Materials 559 153437 (2022) https://doi.org/10.1016/j.jnucmat.2021.153437
Hydrogen in Engineering Metallic Materials
V. G. Gavriljuk, V. M. Shyvaniuk and S. M. Teus Hydrogen in Engineering Metallic Materials 153 (2022) https://doi.org/10.1007/978-3-030-98550-9_4
Prediction on Phase Stabilities of the Zr–H System from the First-Principles
Miao Chen, Wu Qin, Yixuan Hu, et al. Acta Metallurgica Sinica (English Letters) 34 (4) 514 (2021) https://doi.org/10.1007/s40195-020-01113-0
Ab initio thermodynamics investigation of titanium hydrides
P.A.T. Olsson, J. Blomqvist, C. Bjerkén and A.R. Massih Computational Materials Science 97 263 (2015) https://doi.org/10.1016/j.commatsci.2014.10.029
Ab initio thermodynamics of zirconium hydrides and deuterides
P.A.T. Olsson, A.R. Massih, J. Blomqvist, A.-M. Alvarez Holston and C. Bjerkén Computational Materials Science 86 211 (2014) https://doi.org/10.1016/j.commatsci.2014.01.043
Chemical evolution via beta decay: a case study in strontium-90
N A Marks, D J Carter, M Sassi, et al. Journal of Physics: Condensed Matter 25 (6) 065504 (2013) https://doi.org/10.1088/0953-8984/25/6/065504
Ab initio study of helium behavior in titanium tritides
J.H. Liang, Y.Y. Dai, L. Yang, et al. Computational Materials Science 69 107 (2013) https://doi.org/10.1016/j.commatsci.2012.11.033
First-principles calculation for mechanical properties of metal dihydrides
Dai Yun-Ya, Yang Li, Peng Shu-Ming, et al. Acta Physica Sinica 61 (10) 108801 (2012) https://doi.org/10.7498/aps.61.108801
First-principles study of ground state properties of ZrH2
Peng Zhang, Bao-Tian Wang, Chao-Hui He and Ping Zhang Computational Materials Science 50 (12) 3297 (2011) https://doi.org/10.1016/j.commatsci.2011.06.016
Electronic structure and energetics of the tetragonal distortion forTiH2,ZrH2, andHfH2: A first-principles study
Ramiro Quijano, Romeo de Coss and David J. Singh Physical Review B 80 (18) (2009) https://doi.org/10.1103/PhysRevB.80.184103
First-principles investigation of metal-hydride phase stability: The Ti-H system
Qingchuan Xu and Anton Van der Ven Physical Review B 76 (6) (2007) https://doi.org/10.1103/PhysRevB.76.064207
Effect of electronegativity on the mechanical properties of metal hydrides with a fluorite structure
Masato Ito, Daigo Setoyama, Junji Matsunaga, et al. Journal of Alloys and Compounds 426 (1-2) 67 (2006) https://doi.org/10.1016/j.jallcom.2006.02.036
O.N. Imas 156 (2005) https://doi.org/10.1109/KORUS.2005.1507671
Atomic-scale Ab-initio study of the Zr-H system: I. Bulk properties
C. Domain, R. Besson and A. Legris Acta Materialia 50 (13) 3513 (2002) https://doi.org/10.1016/S1359-6454(02)00173-8
Thermal properties of zirconium hydride
Shinsuke Yamanaka, Kazuhiro Yamada, Ken Kurosaki, et al. Journal of Nuclear Materials 294 (1-2) 94 (2001) https://doi.org/10.1016/S0022-3115(01)00457-3
First-principles investigations of transition metal dihydrides, TH2: T = Sc, Ti, V, Y, Zr, Nb; energetics and chemical bonding
Walter Wolf and Peter Herzig Journal of Physics: Condensed Matter 12 (21) 4535 (2000) https://doi.org/10.1088/0953-8984/12/21/301
Isotope effects on the physicochemical properties of zirconium hydride
S Yamanaka, K Yoshioka, M Uno, et al. Journal of Alloys and Compounds 293-295 908 (1999) https://doi.org/10.1016/S0925-8388(99)00439-9
Thermal and mechanical properties of zirconium hydride
S Yamanaka, K Yoshioka, M Uno, et al. Journal of Alloys and Compounds 293-295 23 (1999) https://doi.org/10.1016/S0925-8388(99)00389-8
Electronic structure and lattice stability in the dihydrides of titanium, zirconium, and hafnium
S. E. Kul’kova, O. N. Muryzhnikova and I. I. Naumov Physics of the Solid State 41 (11) 1763 (1999) https://doi.org/10.1134/1.1131093
Influence of atomic vacancy ordering in the nonmetallic sublattice on the electronic structure of titanium hydride
I. A. Nechaev, V. I. Simakov and V. S. Demidenko Russian Physics Journal 41 (10) 958 (1998) https://doi.org/10.1007/BF02514464
Embrittlement and the Bistable Crystal Structure of Zirconium Hydride
M. Gupta Physical Review Letters 81 (15) 3300 (1998) https://doi.org/10.1103/PhysRevLett.81.3300
Correlation between surface and bulk phenomena in the process of thin palladium hydride and titanium hydride film formation
Ewa Nowicka Vacuum 48 (3-4) 199 (1997) https://doi.org/10.1016/S0042-207X(96)00255-2
Features of the change in titanium dihydride electronic structure upon deviation from stoichiometry and ordering effects in interstitial hydrogen distribution
I. A. Nechaev, V. I. Simakov and V. S. Demidenko Russian Physics Journal 40 (1) 35 (1997) https://doi.org/10.1007/BF02806303
Electronic structure of zirconium dihydride
S. E. Kul'kova, O. N. Muryzhnikova and K. A. Beketov Russian Physics Journal 39 (8) 786 (1996) https://doi.org/10.1007/BF02437090
Surface phenomena and isotope effects in the process of titanium hydrides (deuterides) formation
E Nowicka Vacuum 47 (2) 193 (1996) https://doi.org/10.1016/0042-207X(95)00225-1
Influence of the preparation conditions of titanium hydride and deuteride TiHx(Dx) (X ≈ 2.00) on the specific heat around the δ-ɛ transition
J.F. Fernández, F. Cuevas, M. Algueró and C. Sánchez Journal of Alloys and Compounds 231 (1-2) 78 (1995) https://doi.org/10.1016/0925-8388(95)01841-7
Nuclear magnetic resonance study of the phase transitions in TiH2 and TiD2
Z.I. Kudabaev, D.R. Torgeson and A.F. Shevakin Journal of Alloys and Compounds 231 (1-2) 233 (1995) https://doi.org/10.1016/0925-8388(95)01821-2
Electron Band Structure of Transition Metal Dihydrides Monitored by Metal NMR*
O. J. Żogał and B. Nowak Zeitschrift für Physikalische Chemie 181 (1-2) 43 (1993) https://doi.org/10.1524/zpch.1993.181.Part_1_2.043
Surface phenomena in titanium hydride formation
R. Duś, E. Nowicka and Z. Wolfram Surface Science 269-270 545 (1992) https://doi.org/10.1016/0039-6028(92)91306-V
Hydrogen in Intermetallic Compunds II
Moshe H. Mintz, Isaac Jacob and David Shaltiel Topics in Applied Physics, Hydrogen in Intermetallic Compunds II 67 285 (1992) https://doi.org/10.1007/3-540-54668-5_14
47Ti and 49Ti nuclear magnetic resonance in TiH2
B. Nowak, O.J. Zogal and K. Niedźwiedź Journal of Alloys and Compounds 186 (1) 53 (1992) https://doi.org/10.1016/0925-8388(92)90620-O
Electron Band Structure of Transition Metal Dihydrides Monitored by Metal NMR*
O. J. żogał and B. Nowak Zeitschrift für Physikalische Chemie 1 (1) 577 (1992) https://doi.org/10.1524/zpch.1992.1.1.577
91Zr nuclear magnetic resonance in tetragonal ZrH2
O.J. Żogał, B. Nowak and K. Niedźwiedź Solid State Communications 80 (8) 601 (1991) https://doi.org/10.1016/0038-1098(91)90160-W
Hydrogen in Intermetallic Compounds I
Michèle Gupta and Louis Schlapbach Topics in Applied Physics, Hydrogen in Intermetallic Compounds I 63 139 (1988) https://doi.org/10.1007/3540183337_12
Effective and Debye temperatures of Ti in TiC,TiO2, andTiH2
I. Jacob, R. Moreh, O. Shahal and A. Wolf Physical Review B 35 (1) 8 (1987) https://doi.org/10.1103/PhysRevB.35.8
The H−Ti (Hydrogen-Titanium) system
A. San-Martin and F. D. Manchester Bulletin of Alloy Phase Diagrams 8 (1) 30 (1987) https://doi.org/10.1007/BF02868888
Comparison between the experimental Compton profiles of Ti and TiH1.98
G.D. Boulakis Journal de Physique 47 (9) 1523 (1986) https://doi.org/10.1051/jphys:019860047090152300
Elastic and magnetic interactions in a narrow twofold-degenerate band
D. K. Ray and J. P. Jardin Physical Review B 33 (7) 5021 (1986) https://doi.org/10.1103/PhysRevB.33.5021
Transport properties of virconium hydrides
S̆. Molokác̆, A. Feher, P. Petrovic̆ and v. Málek Journal of the Less Common Metals 118 (2) 183 (1986) https://doi.org/10.1016/0022-5088(86)90168-2
Titanium Knight shift in titanium hydride
S. D. Goren, C. Korn, H. Riesemeier, E. Rössler and K. Lüders Physical Review B 34 (10) 6917 (1986) https://doi.org/10.1103/PhysRevB.34.6917
Thermoreflectance investigation of zirconium hydrides in the face-centered-tetragonal phase
G. Paolucci, E. Colavita and J. H. Weaver Physical Review B 32 (4) 2610 (1985) https://doi.org/10.1103/PhysRevB.32.2610
Unusual behaviour of the band structure and electronic-induced phase transitions in metallic hydrides
N.I. Kulikov Journal of the Less Common Metals 107 (1) 111 (1985) https://doi.org/10.1016/0022-5088(85)90247-4
Effects of thermal treatments on the lattice properties and electronic structure ofZrHx
R. C. Bowman, B. D. Craft, J. S. Cantrell and E. L. Venturini Physical Review B 31 (9) 5604 (1985) https://doi.org/10.1103/PhysRevB.31.5604
Electronic structure of group iv hydrides and their alloys
A.C. Switendick Journal of the Less Common Metals 101 191 (1984) https://doi.org/10.1016/0022-5088(84)90094-8
Electronic structure of γ phase zirconium hydride
A.C. Switendick Journal of the Less Common Metals 103 (2) 309 (1984) https://doi.org/10.1016/0022-5088(84)90254-6
Self-consistent band structure calculations of titanium, zirconium and hafnium dihydrides
D.A. Papaconstantopoulos and A.C. Switendick Journal of the Less Common Metals 103 (2) 317 (1984) https://doi.org/10.1016/0022-5088(84)90255-8
Electronic structure and properties of hydrides of 3d and 4d metals and intermetallics
E. Wicke Journal of the Less Common Metals 101 17 (1984) https://doi.org/10.1016/0022-5088(84)90085-7
The effects of hydrogen sorption on the resistance and work-function of titanium films at 290K
K Kandasamy and N A Surplice Journal of Physics D: Applied Physics 17 (2) 387 (1984) https://doi.org/10.1088/0022-3727/17/2/023
Nuclear magnetic resonance study of the dihydride phase of the Ti-V-H system
B Nowak Journal of the Less Common Metals 101 245 (1984) https://doi.org/10.1016/0022-5088(84)90100-0
H1NMR and magnetic susceptibility study ofThNiAlHxandUNiAlHx
O. J. Zogal, D. J. Lam, A. Zygmunt, et al. Physical Review B 29 (9) 4837 (1984) https://doi.org/10.1103/PhysRevB.29.4837
Investigation of the Electronic Structure of TihX and Ti1−Y VYHX by Positron Annihilation
E. Dębowska physica status solidi (b) 117 (2) 699 (1983) https://doi.org/10.1002/pssb.2221170232
Electronic structure of zirconium hydride: A proton NMR study
R. C. Bowman, E. L. Venturini, B. D. Craft, A. Attalla and D. B. Sullenger Physical Review B 27 (3) 1474 (1983) https://doi.org/10.1103/PhysRevB.27.1474
High temperature thermodynamics of H2 and D2 in titanium, and in dilute titanium oxygen solid solutions
P. Dantzer Journal of Physics and Chemistry of Solids 44 (9) 913 (1983) https://doi.org/10.1016/0022-3697(83)90130-0
The activation of FeTi for hydrogen absorption
L. Schlapbach and T. Riesterer Applied Physics A Solids and Surfaces 32 (4) 169 (1983) https://doi.org/10.1007/BF00820257
Electronic Structure and Properties of Hydrogen in Metals
H. G. Severin and E. Wicke Electronic Structure and Properties of Hydrogen in Metals 197 (1983) https://doi.org/10.1007/978-1-4684-7630-9_31
NMR study comparing the electronic structures ofZrHxandTiHx
C. Korn Physical Review B 28 (1) 95 (1983) https://doi.org/10.1103/PhysRevB.28.95
Electronic Structure and Properties of Hydrogen in Metals
A. Attalla, R. C. Bowman, B. D. Craft, E. L. Venturini and W.-K. Rhim Electronic Structure and Properties of Hydrogen in Metals 443 (1983) https://doi.org/10.1007/978-1-4684-7630-9_62
A quantitative systematization of hydrogen-induced changes in Debye temperatures of metals
I. Jacob Journal of the Less Common Metals 89 (2) 309 (1983) https://doi.org/10.1016/0022-5088(83)90339-9
Occupation of tetrahedral and octahedral interstices in rare earth hydrides as a probe for the electronic structure
J. Hauck Journal of the Less Common Metals 94 (1) 123 (1983) https://doi.org/10.1016/0022-5088(83)90149-2
Electronic structure of TiH2
Atsushi Fujimori and Nobuo Tsuda Solid State Communications 41 (6) 491 (1982) https://doi.org/10.1016/0038-1098(82)90532-4
Proton NMR line shapes inZrHx
R. C. Bowman, E. L. Venturini and W. -K. Rhim Physical Review B 26 (5) 2652 (1982) https://doi.org/10.1103/PhysRevB.26.2652
Thermophysical Properties Research Literature Retrieval Guide 1900–1980
J. F. Chaney, V. Ramdas, C. R. Rodriguez and M. H. Wu Thermophysical Properties Research Literature Retrieval Guide 1900–1980 337 (1982) https://doi.org/10.1007/978-1-4757-1499-9_15
Electronic properties and electron-phonon coupling in zirconium and niobium hydrides
Michèle Gupta Physical Review B 25 (2) 1027 (1982) https://doi.org/10.1103/PhysRevB.25.1027
Electronic structure of non-stoichiometric titanium hydride
Atsushi Fujimori and Nobuo Tsuda Journal of the Less Common Metals 88 (2) 269 (1982) https://doi.org/10.1016/0022-5088(82)90231-4
Metal–Hydrogen Systems
M. Gupta Metal–Hydrogen Systems 381 (1982) https://doi.org/10.1016/B978-0-08-027311-2.50039-5
1H NMR studies in lutetium dihydride
O.J. Żogał and S. Idziak Physica B+C 114 (2) 163 (1982) https://doi.org/10.1016/0378-4363(82)90032-8
Investigations of the molar heat capacity at low temperatures in the TiH x system
K. Bohmhammel, G. Wolf, G. Gross and H. M�dge Journal of Low Temperature Physics 43 (5-6) 521 (1981) https://doi.org/10.1007/BF00115613
Proton NMR studies of electronic structure inTi1−yVyH1.95
R. C. Bowman and W. -K. Rhim Physical Review B 24 (4) 2232 (1981) https://doi.org/10.1103/PhysRevB.24.2232
Metal Hydrides
Michèle Gupta Metal Hydrides 255 (1981) https://doi.org/10.1007/978-1-4757-5814-6_12
Electronic structure of metal hydrides. IV.TiHx,ZrHx,HfHx, and the fcc-fct lattice distortion
J. H. Weaver, D. J. Peterman, D. T. Peterson and A. Franciosi Physical Review B 23 (4) 1692 (1981) https://doi.org/10.1103/PhysRevB.23.1692
Multipulse NMR investigation of band structure in titanium hydride: proton Knight shift and spin-lattice relaxation
R Goring, R Lukas and K Bohmhammel Journal of Physics C: Solid State Physics 14 (36) 5675 (1981) https://doi.org/10.1088/0022-3719/14/36/011
Electronic structure of rare-earth hydrides: LaH2and LaH3
Michèle Gupta and J. P. Burger Physical Review B 22 (12) 6074 (1980) https://doi.org/10.1103/PhysRevB.22.6074
Electronic structure of cerium hydrides: Augmented-plane-wave linear-combination-of-atomic-orbitals energy bands
A. Fujimori, F. Minami and N. Tsuda Physical Review B 22 (8) 3573 (1980) https://doi.org/10.1103/PhysRevB.22.3573
Band Structure Calculations for Metal Hydrogen Systems*
A. C. Switendick Zeitschrift für Physikalische Chemie 117 (117) 89 (1979) https://doi.org/10.1524/zpch.1979.117.117.089
Electronically driven tetragonal distortion in TiH2
M. Gupta Solid State Communications 29 (1) 47 (1979) https://doi.org/10.1016/0038-1098(79)90149-2
Band structure and electronic properties of transition metal hydrides
N. I. Kulikov physica status solidi (b) 91 (2) 753 (1979) https://doi.org/10.1002/pssb.2220910244
Hydrogen in Metals I
A. C. Switendick Topics in Applied Physics, Hydrogen in Metals I 28 101 (1978) https://doi.org/10.1007/3540087052_44
Stepped Ordering in Binary Solid Solutions
I. G. Ratishvili physica status solidi (b) 87 (2) 461 (1978) https://doi.org/10.1002/pssb.2220870207
The dissociation pressure of γ-phase titanium hydride at 20-70 degrees C
N A Surplice and K Kandasamy Journal of Physics D: Applied Physics 11 (14) L157 (1978) https://doi.org/10.1088/0022-3727/11/14/002
Nuclear-magnetic-resonance study of the electronic structure of the Ti-H system
Charles Korn Physical Review B 17 (4) 1707 (1978) https://doi.org/10.1103/PhysRevB.17.1707
Electronic structure of ErH2
M. Gupta Solid State Communications 27 (12) 1355 (1978) https://doi.org/10.1016/0038-1098(78)91571-5
The electronic band structure and interatomic bond in nickel and titanium hydrides
N. I. Kulikov, V. N. Borzunov and A. D. Zvonkov physica status solidi (b) 86 (1) 83 (1978) https://doi.org/10.1002/pssb.2220860109
Influence of the electronic structure on the titanium-vanadium-hydrogen phase diagram
A.C. Switendick Journal of the Less Common Metals 49 283 (1976) https://doi.org/10.1016/0022-5088(76)90041-2
Proton spin-lattice relaxation time in the dihydride phase of the ternary TiNbH alloy
B. Nowak, N. Piślewski and W. Leszczyński Physica Status Solidi (a) 37 (2) 669 (1976) https://doi.org/10.1002/pssa.2210370238
Magnetic properties of titanium vanadium hydrides
H. Nagel and H. Goretzki Journal of Physics and Chemistry of Solids 36 (5) 431 (1975) https://doi.org/10.1016/0022-3697(75)90070-0
The use of the NGR method to investigate the redistribution of iron ions in a zirconium alloy during corrosion
Yu. F. Babikova, P. L. Gruzin, A. V. Ivanov and V. P. Filippov Soviet Atomic Energy 38 (3) 177 (1975) https://doi.org/10.1007/BF01666659
Kernmagnetische Relaxationsspektroskopie an binären Titanhydriden TiH2‐x
A. Schmolz and F. Noack Berichte der Bunsengesellschaft für physikalische Chemie 78 (4) 339 (1974) https://doi.org/10.1002/bbpc.19740780408
Thermopower and electrochemical potentials of zirconium hydrides
T. S. Aslanova, G. A. Ivashina, V. F. Nemchenko, S. D. Pigida and I. R. Fomina Soviet Physics Journal 17 (9) 1240 (1974) https://doi.org/10.1007/BF01208673
Structural problems of transition metal hydrides
B. Staliński Berichte der Bunsengesellschaft für physikalische Chemie 76 (8) 724 (1972) https://doi.org/10.1002/bbpc.19720760806