Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Dopant binding with vacancies and helium in metal hydrides

Amy Kaczmarowski, Clark Snow, Stephen Foiles, Corbett Battaile and Dane Morgan
Journal of Nuclear Materials 559 153437 (2022)
https://doi.org/10.1016/j.jnucmat.2021.153437

Prediction on Phase Stabilities of the Zr–H System from the First-Principles

Miao Chen, Wu Qin, Yixuan Hu, et al.
Acta Metallurgica Sinica (English Letters) 34 (4) 514 (2021)
https://doi.org/10.1007/s40195-020-01113-0

Ab initio thermodynamics of zirconium hydrides and deuterides

P.A.T. Olsson, A.R. Massih, J. Blomqvist, A.-M. Alvarez Holston and C. Bjerkén
Computational Materials Science 86 211 (2014)
https://doi.org/10.1016/j.commatsci.2014.01.043

First-principles calculation for mechanical properties of metal dihydrides

Dai Yun-Ya, Yang Li, Peng Shu-Ming, et al.
Acta Physica Sinica 61 (10) 108801 (2012)
https://doi.org/10.7498/aps.61.108801

Electronic structure and energetics of the tetragonal distortion forTiH2,ZrH2, andHfH2: A first-principles study

Ramiro Quijano, Romeo de Coss and David J. Singh
Physical Review B 80 (18) (2009)
https://doi.org/10.1103/PhysRevB.80.184103

Effect of electronegativity on the mechanical properties of metal hydrides with a fluorite structure

Masato Ito, Daigo Setoyama, Junji Matsunaga, et al.
Journal of Alloys and Compounds 426 (1-2) 67 (2006)
https://doi.org/10.1016/j.jallcom.2006.02.036

First-principles investigations of transition metal dihydrides, TH2: T = Sc, Ti, V, Y, Zr, Nb; energetics and chemical bonding

Walter Wolf and Peter Herzig
Journal of Physics: Condensed Matter 12 (21) 4535 (2000)
https://doi.org/10.1088/0953-8984/12/21/301

Electronic structure and lattice stability in the dihydrides of titanium, zirconium, and hafnium

S. E. Kul’kova, O. N. Muryzhnikova and I. I. Naumov
Physics of the Solid State 41 (11) 1763 (1999)
https://doi.org/10.1134/1.1131093

Influence of atomic vacancy ordering in the nonmetallic sublattice on the electronic structure of titanium hydride

I. A. Nechaev, V. I. Simakov and V. S. Demidenko
Russian Physics Journal 41 (10) 958 (1998)
https://doi.org/10.1007/BF02514464

Features of the change in titanium dihydride electronic structure upon deviation from stoichiometry and ordering effects in interstitial hydrogen distribution

I. A. Nechaev, V. I. Simakov and V. S. Demidenko
Russian Physics Journal 40 (1) 35 (1997)
https://doi.org/10.1007/BF02806303

Electronic structure of zirconium dihydride

S. E. Kul'kova, O. N. Muryzhnikova and K. A. Beketov
Russian Physics Journal 39 (8) 786 (1996)
https://doi.org/10.1007/BF02437090

Influence of the preparation conditions of titanium hydride and deuteride TiHx(Dx) (X ≈ 2.00) on the specific heat around the δ-ɛ transition

J.F. Fernández, F. Cuevas, M. Algueró and C. Sánchez
Journal of Alloys and Compounds 231 (1-2) 78 (1995)
https://doi.org/10.1016/0925-8388(95)01841-7

Nuclear magnetic resonance study of the phase transitions in TiH2 and TiD2

Z.I. Kudabaev, D.R. Torgeson and A.F. Shevakin
Journal of Alloys and Compounds 231 (1-2) 233 (1995)
https://doi.org/10.1016/0925-8388(95)01821-2

Hydrogen in Intermetallic Compunds II

Moshe H. Mintz, Isaac Jacob and David Shaltiel
Topics in Applied Physics, Hydrogen in Intermetallic Compunds II 67 285 (1992)
https://doi.org/10.1007/3-540-54668-5_14

Hydrogen in Intermetallic Compounds I

Michèle Gupta and Louis Schlapbach
Topics in Applied Physics, Hydrogen in Intermetallic Compounds I 63 139 (1988)
https://doi.org/10.1007/3540183337_12

Thermoreflectance investigation of zirconium hydrides in the face-centered-tetragonal phase

G. Paolucci, E. Colavita and J. H. Weaver
Physical Review B 32 (4) 2610 (1985)
https://doi.org/10.1103/PhysRevB.32.2610

Effects of thermal treatments on the lattice properties and electronic structure ofZrHx

R. C. Bowman, B. D. Craft, J. S. Cantrell and E. L. Venturini
Physical Review B 31 (9) 5604 (1985)
https://doi.org/10.1103/PhysRevB.31.5604

Self-consistent band structure calculations of titanium, zirconium and hafnium dihydrides

D.A. Papaconstantopoulos and A.C. Switendick
Journal of the Less Common Metals 103 (2) 317 (1984)
https://doi.org/10.1016/0022-5088(84)90255-8

The effects of hydrogen sorption on the resistance and work-function of titanium films at 290K

K Kandasamy and N A Surplice
Journal of Physics D: Applied Physics 17 (2) 387 (1984)
https://doi.org/10.1088/0022-3727/17/2/023

Electronic structure of zirconium hydride: A proton NMR study

R. C. Bowman, E. L. Venturini, B. D. Craft, A. Attalla and D. B. Sullenger
Physical Review B 27 (3) 1474 (1983)
https://doi.org/10.1103/PhysRevB.27.1474

High temperature thermodynamics of H2 and D2 in titanium, and in dilute titanium oxygen solid solutions

P. Dantzer
Journal of Physics and Chemistry of Solids 44 (9) 913 (1983)
https://doi.org/10.1016/0022-3697(83)90130-0

The activation of FeTi for hydrogen absorption

L. Schlapbach and T. Riesterer
Applied Physics A Solids and Surfaces 32 (4) 169 (1983)
https://doi.org/10.1007/BF00820257

Electronic Structure and Properties of Hydrogen in Metals

A. Attalla, R. C. Bowman, B. D. Craft, E. L. Venturini and W.-K. Rhim
Electronic Structure and Properties of Hydrogen in Metals 443 (1983)
https://doi.org/10.1007/978-1-4684-7630-9_62

Occupation of tetrahedral and octahedral interstices in rare earth hydrides as a probe for the electronic structure

J. Hauck
Journal of the Less Common Metals 94 (1) 123 (1983)
https://doi.org/10.1016/0022-5088(83)90149-2

Thermophysical Properties Research Literature Retrieval Guide 1900–1980

J. F. Chaney, V. Ramdas, C. R. Rodriguez and M. H. Wu
Thermophysical Properties Research Literature Retrieval Guide 1900–1980 337 (1982)
https://doi.org/10.1007/978-1-4757-1499-9_15

Investigations of the molar heat capacity at low temperatures in the TiH x system

K. Bohmhammel, G. Wolf, G. Gross and H. M�dge
Journal of Low Temperature Physics 43 (5-6) 521 (1981)
https://doi.org/10.1007/BF00115613

Electronic structure of metal hydrides. IV.TiHx,ZrHx,HfHx, and the fcc-fct lattice distortion

J. H. Weaver, D. J. Peterman, D. T. Peterson and A. Franciosi
Physical Review B 23 (4) 1692 (1981)
https://doi.org/10.1103/PhysRevB.23.1692

Multipulse NMR investigation of band structure in titanium hydride: proton Knight shift and spin-lattice relaxation

R Goring, R Lukas and K Bohmhammel
Journal of Physics C: Solid State Physics 14 (36) 5675 (1981)
https://doi.org/10.1088/0022-3719/14/36/011

Electronic structure of cerium hydrides: Augmented-plane-wave linear-combination-of-atomic-orbitals energy bands

A. Fujimori, F. Minami and N. Tsuda
Physical Review B 22 (8) 3573 (1980)
https://doi.org/10.1103/PhysRevB.22.3573

The electronic band structure and interatomic bond in nickel and titanium hydrides

N. I. Kulikov, V. N. Borzunov and A. D. Zvonkov
physica status solidi (b) 86 (1) 83 (1978)
https://doi.org/10.1002/pssb.2220860109

Proton spin-lattice relaxation time in the dihydride phase of the ternary TiNbH alloy

B. Nowak, N. Piślewski and W. Leszczyński
Physica Status Solidi (a) 37 (2) 669 (1976)
https://doi.org/10.1002/pssa.2210370238

The use of the NGR method to investigate the redistribution of iron ions in a zirconium alloy during corrosion

Yu. F. Babikova, P. L. Gruzin, A. V. Ivanov and V. P. Filippov
Soviet Atomic Energy 38 (3) 177 (1975)
https://doi.org/10.1007/BF01666659

Kernmagnetische Relaxationsspektroskopie an binären Titanhydriden TiH2‐x

A. Schmolz and F. Noack
Berichte der Bunsengesellschaft für physikalische Chemie 78 (4) 339 (1974)
https://doi.org/10.1002/bbpc.19740780408

Thermopower and electrochemical potentials of zirconium hydrides

T. S. Aslanova, G. A. Ivashina, V. F. Nemchenko, S. D. Pigida and I. R. Fomina
Soviet Physics Journal 17 (9) 1240 (1974)
https://doi.org/10.1007/BF01208673