La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
B. Dreyfus , R. Maynard
J. Phys. France, 28 11-12 (1967) 955-966
Citations de cet article :
27 articles
Thermal conductivity and scattering models for graphene: From intrinsic scattering of pristine graphene to strong extrinsic scattering of functionalized graphene
Byoung Seo Lee Applied Surface Science 497 143739 (2019) https://doi.org/10.1016/j.apsusc.2019.143739
Effect of phonon scattering by substitutional and structural defects on thermal conductivity of 2D graphene
Byoung Seo Lee Journal of Physics: Condensed Matter 30 (29) 295302 (2018) https://doi.org/10.1088/1361-648X/aacabe
Thermal conductivity of silicon carbide composites with highly oriented graphene nanoplatelets
Benito Román-Manso, Yoan Chevillotte, M. Isabel Osendi, Manuel Belmonte and Pilar Miranzo Journal of the European Ceramic Society 36 (16) 3987 (2016) https://doi.org/10.1016/j.jeurceramsoc.2016.06.016
Thermal conductivity of graphene and graphite
A. Alofi and G. P. Srivastava Physical Review B 87 (11) (2013) https://doi.org/10.1103/PhysRevB.87.115421
Carbon‐based Solids and Materials
Carbon‐based Solids and Materials 169 (2013) https://doi.org/10.1002/9781118557617.ch6
Increase in specific heat and possible hindered rotation of interstitialC2molecules in neutron-irradiated graphite
Tadao Iwata and Mitsuo Watanabe Physical Review B 81 (1) (2010) https://doi.org/10.1103/PhysRevB.81.014105
High Thermal Conductivity Materials
G.P. Srivastava High Thermal Conductivity Materials 1 (2006) https://doi.org/10.1007/0-387-25100-6_1
Temperature dependence of lattice vibrations and analysis of the specific heat of graphite
Takeshi Nihira and Tadao Iwata Physical Review B 68 (13) (2003) https://doi.org/10.1103/PhysRevB.68.134305
Advances in Cryogenic Engineering Materials
B. M. S. Rugaiganisa, S. Nishijima and T. Okada Advances in Cryogenic Engineering Materials 113 (1996) https://doi.org/10.1007/978-1-4757-9059-7_16
Graphite Intercalation Compounds II
Jean-Paul Issi Springer Series in Materials Science, Graphite Intercalation Compounds II 18 195 (1992) https://doi.org/10.1007/978-3-642-84479-9_6
Determination of lattice defects in carbon fibers by means of thermal-conductivity measurements
B. Nysten, J.-P. Issi, R. Barton, D. R. Boyington and J. G. Lavin Physical Review B 44 (5) 2142 (1991) https://doi.org/10.1103/PhysRevB.44.2142
Lattice thermal conductivity of layered-structure compounds
Anil Kumar, M. A. Ansari and B. K. Srivastava Physical Review B 31 (8) 5509 (1985) https://doi.org/10.1103/PhysRevB.31.5509
Electronic and lattice contributions to the thermal conductivity of graphite intercalation compounds
J. -P. Issi, J. Heremans and M. S. Dresselhaus Physical Review B 27 (2) 1333 (1983) https://doi.org/10.1103/PhysRevB.27.1333
Thermoelectric power of graphite intercalation compounds
Ko Sugihara Physical Review B 28 (4) 2157 (1983) https://doi.org/10.1103/PhysRevB.28.2157
Thermophysical Properties Research Literature Retrieval Guide 1900–1980
J. F. Chaney, V. Ramdas, C. R. Rodriguez and M. H. Wu Thermophysical Properties Research Literature Retrieval Guide 1900–1980 213 (1982) https://doi.org/10.1007/978-1-4757-1481-4_3
Thermal Transport in Intercalated Graphite
J-P. Issi MRS Proceedings 20 (1982) https://doi.org/10.1557/PROC-20-147
High-magnetic-field thermal-conductivity measurements in graphite intercalation compounds
J. Heremans, M. Shayegan, M. S. Dresselhaus and J -P. Issi Physical Review B 26 (6) 3338 (1982) https://doi.org/10.1103/PhysRevB.26.3338
Thermal conductivity of NbSe3 and TiSe2
M. Nùñez-Regueiro, C. Ayache and M. Locatelli Physica B+C 108 (1-3) 1035 (1981) https://doi.org/10.1016/0378-4363(81)90821-4
Thermal Conductivity of Electron-Irradiated Pyrolytic Graphite
Takeshi Nihira and Tadao Iwata Journal of the Physical Society of Japan 49 (5) 1916 (1980) https://doi.org/10.1143/JPSJ.49.1916
Restauration de la conductivité thermique d'un graphite pyrolytique irradié aux neutrons à basse température
A. de Combarieu Carbon 14 (6) 364 (1976) https://doi.org/10.1016/0008-6223(76)90012-9
Low-temperature magnetothermal conductivity of pyrolytic graphite
C. K. Chau and S. Y. Lu Journal of Low Temperature Physics 15 (5-6) 447 (1974) https://doi.org/10.1007/BF00654619
Anelastic relaxation peaks in graphites after neutron irradiation at low temperature
D. Rouby, P. F. Gobin and E. Bonjour Philosophical Magazine 29 (5) 983 (1974) https://doi.org/10.1080/14786437408226585
Thermoelectric power of electron-irradiated graphite at low temperatures
A. de Combarieu, J.P. Jay-Gerin and R. Maynard Journal of Physics and Chemistry of Solids 34 (2) 189 (1973) https://doi.org/10.1016/0022-3697(73)90076-0
Young's modulus and internal friction of graphite irradiated at low temperature
E. Bonjour, R. Le Diouron, G. Fiorese, D. Rouby and P. F. Gobin Radiation Effects 11 (3-4) 155 (1971) https://doi.org/10.1080/00337577108231101
Phonon drag in graphite
J. P. Jay-Gerin and R. Maynard Journal of Low Temperature Physics 3 (4) 377 (1970) https://doi.org/10.1007/BF01435281
The thermal conductivity of fast neutron irradiated graphite
R. Taylor, B.T. Kelly and K.E. Gilchrist Journal of Physics and Chemistry of Solids 30 (9) 2251 (1969) https://doi.org/10.1016/0022-3697(69)90152-8
The basal thermal conductivity of highly oriented pyrolytic graphite as a function of degree of graphitisation
B.T Kelly and K.E Gilchrist Carbon 7 (3) 355 (1969) https://doi.org/10.1016/0008-6223(69)90122-5