Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Thermal conductivity and scattering models for graphene: From intrinsic scattering of pristine graphene to strong extrinsic scattering of functionalized graphene

Byoung Seo Lee
Applied Surface Science 497 143739 (2019)
https://doi.org/10.1016/j.apsusc.2019.143739

Effect of phonon scattering by substitutional and structural defects on thermal conductivity of 2D graphene

Byoung Seo Lee
Journal of Physics: Condensed Matter 30 (29) 295302 (2018)
https://doi.org/10.1088/1361-648X/aacabe

Thermal conductivity of silicon carbide composites with highly oriented graphene nanoplatelets

Benito Román-Manso, Yoan Chevillotte, M. Isabel Osendi, Manuel Belmonte and Pilar Miranzo
Journal of the European Ceramic Society 36 (16) 3987 (2016)
https://doi.org/10.1016/j.jeurceramsoc.2016.06.016

Increase in specific heat and possible hindered rotation of interstitialC2molecules in neutron-irradiated graphite

Tadao Iwata and Mitsuo Watanabe
Physical Review B 81 (1) (2010)
https://doi.org/10.1103/PhysRevB.81.014105

Determination of lattice defects in carbon fibers by means of thermal-conductivity measurements

B. Nysten, J.-P. Issi, R. Barton, D. R. Boyington and J. G. Lavin
Physical Review B 44 (5) 2142 (1991)
https://doi.org/10.1103/PhysRevB.44.2142

Electronic and lattice contributions to the thermal conductivity of graphite intercalation compounds

J. -P. Issi, J. Heremans and M. S. Dresselhaus
Physical Review B 27 (2) 1333 (1983)
https://doi.org/10.1103/PhysRevB.27.1333

Thermophysical Properties Research Literature Retrieval Guide 1900–1980

J. F. Chaney, V. Ramdas, C. R. Rodriguez and M. H. Wu
Thermophysical Properties Research Literature Retrieval Guide 1900–1980 213 (1982)
https://doi.org/10.1007/978-1-4757-1481-4_3

High-magnetic-field thermal-conductivity measurements in graphite intercalation compounds

J. Heremans, M. Shayegan, M. S. Dresselhaus and J -P. Issi
Physical Review B 26 (6) 3338 (1982)
https://doi.org/10.1103/PhysRevB.26.3338

Thermal Conductivity of Electron-Irradiated Pyrolytic Graphite

Takeshi Nihira and Tadao Iwata
Journal of the Physical Society of Japan 49 (5) 1916 (1980)
https://doi.org/10.1143/JPSJ.49.1916

Low-temperature magnetothermal conductivity of pyrolytic graphite

C. K. Chau and S. Y. Lu
Journal of Low Temperature Physics 15 (5-6) 447 (1974)
https://doi.org/10.1007/BF00654619

Anelastic relaxation peaks in graphites after neutron irradiation at low temperature

D. Rouby, P. F. Gobin and E. Bonjour
Philosophical Magazine 29 (5) 983 (1974)
https://doi.org/10.1080/14786437408226585

Thermoelectric power of electron-irradiated graphite at low temperatures

A. de Combarieu, J.P. Jay-Gerin and R. Maynard
Journal of Physics and Chemistry of Solids 34 (2) 189 (1973)
https://doi.org/10.1016/0022-3697(73)90076-0

Young's modulus and internal friction of graphite irradiated at low temperature

E. Bonjour, R. Le Diouron, G. Fiorese, D. Rouby and P. F. Gobin
Radiation Effects 11 (3-4) 155 (1971)
https://doi.org/10.1080/00337577108231101